IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

427

Fast Humanoid Robot Collision-Free Footstep
Planning Using Swept Volume Approximations

Nicolas Perrin, Olivier Stasse, Léo Baudouin, Florent Lamiraux, and Eiichi Yoshida

Abstract—1In this paper, we propose a novel and coherent frame-
work for fast footstep planning for legged robots on a flat ground
with 3-D obstacle avoidance. We use swept volume approxima-
tions that are computed offline in order to considerably reduce
the time spent in collision checking during the online planning
phase, in which a rapidly exploring random tree variant is used to
find collision-free sequences of half-steps (which are produced by a
specific walking pattern generator). Then, an original homotopy is
used to smooth the sequences into natural motions, gently avoiding
the obstacles. The results are experimentally validated on the robot
HRP-2.

Index Terms—Footstep generation, humanoid robots, motion
planning, obstacle avoidance.

1. INTRODUCTION

RGUABLY, the one thing that most differentiates hu-

manoid robots from their wheeled counterparts is their
intrinsic ability to step over obstacles on the ground. For this
reason, a lot of work has been done on the problem of humanoid
robot walk planning, with the aim of best exploiting this unique
capability. Since humanoid robots combine high dimensional-
ity with underactuation, two properties that tend to drastically
increase the complexity of motion planning, this problem is not
easy to solve. Nevertheless, and although there is no completely
satisfying solution so far, a lot of promising techniques and tools
have been introduced over the past decade.

Probably, the most successful approaches are based on the
use of the A* algorithm with a finite transition model, i.e., a rel-
atively small set of possible steps (see, e.g., [6], [7], and [23]).
For each step, a corresponding configuration space trajectory is
known, and it is possible to check quite quickly whether a given
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step will avoid the obstacles or not. Since those steps need to
be connectable at will, however, it often requires the initial and
final speed of the robot bodies to be zero for all the steps of
the transition model. At least some parts of the gaits produced
are, thus, static. This is, for example, the case in [1] and [23].
Chestnutt et al. avoid it in [7] by using a search space which con-
sists in sequences of two consecutive steps. However, since this
search space has a higher dimensionality, in order to be expres-
sive, transition models need to be much larger than when only
isolated steps are considered. Yet, the use of the A* algorithm
strongly constrains the size of the transition model. Even when
the transitions are isolated steps, the stepping capabilities are
often limited because the complexity of the A* search quickly
increases with the size of the transition model. Recently, though,
some interesting refinements have been considered in order to
enhance the stepping capabilities while keeping a small transi-
tion model. In [9], for example, the steps of a set of reference
actions (i.e., the transition model) can be slightly adjusted to
avoid bad terrain locations.

In this paper, we replace the A* search by a sampling-based
algorithm in order to directly deal with a large transition model
and add several other improvements to the standard {A* + finite
transition model} approach. Here are our main contributions.

1) Thanks to a walking pattern generator that is specifically
designed, we obtain a low-dimensional search space which
can be densely covered by relatively few points. With an
automatically generated finite transition model of about
300 points in this search space, we are able to obtain
very expressive stepping capabilities. To deal with such
a large transition model, we use, instead of the classical
A* search, a specific rapidly exploring random tree (RRT)
algorithm.

2) Each point in the transition model corresponds to a con-
figuration space trajectory of the robot. Through extensive
offline computations, for each of them, we approximate
the volume swept in the workspace by a part of the robot
lower body (from the knees down) during the execution
of the trajectory and store it in an efficient data structure.
It helps to drastically reduce the time consumed by the
online planning phase when checking for collisions with
the environment.

3) Finally, with a simple homotopy, we quickly smooth and
accelerate the trajectories that are obtained after the plan-
ning phase, and as a result, the final motions produced
are fully dynamic: a feature that is often lacking with cur-
rent approaches. On top of that, there is no incoherence
between the planning phase and the smoothing phase;
therefore, we have the guarantee that if the planner returns
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a collision-free solution, then the robot will execute a se-
quence which will also be collision-free (this guarantee
is up to some details—discrepancies between simulation
and real world, errors of approximation, errors due to dis-
cretization, etc.).

1) Pattern generation and smoothing homotopy: One of the
key elements of our framework is the combination between a
specific walking pattern generator based on “half-steps” and a
simple homotopy that can quickly smooth sequences of (half-)
steps. We present both in Section II (we introduced them in [32]).
Before the use of the homotopy, the generated sequences are
called “raw” and simply correspond to concatenations of iso-
lated half-steps. Isolated half-steps are obtained by fixing the
position of the swing foot when it is at its maximum height: This
puts us in the conditions of [23] where two “via point configu-
rations” Qyight and Qg (corresponding to balanced postures)
are fixed and divide steps into two parts: an upward half-step
and a downward half-step. In [23], this restriction was used in
order to reduce the number of trajectories to consider; we use
it in order to reduce the dimensionality of the input space. The
simple homotopy that we use to smooth sequences of half-steps
is, to our knowledge, new in the field of humanoid robotics (but
it is based on the same principle as the techniques introduced
in [28] and [29]).

2) Finite transition model and swept volume approximations:
Our pattern generator benefits from an input space of dimen-
sion only 3, and therefore, we can cover it with a dense grid
of only relatively few points. Each point corresponds to a se-
quence of two half-steps. For each point of the grid, we first
simulate the sequence of half-steps and check that it is feasible,
i.e., it contains no self-collision and does not violate the joints
limits. The points which correspond to feasible trajectories will
be the elements of our transition model. In Section III, we ex-
plain the construction of this transition model and show how, for
each of its elements, we approximate the volume swept by the
robot lower body during the execution of the corresponding tra-
jectory. By speeding up collision checks, these approximations
will enable us to save a considerable computation time online.

At first, it might seem strange to combine precomputed swept
volumes and a smoothing homotopy that modifies trajectories,
but in fact, in the whole process, the homotopy is only applied to
one feasible trajectory returned by the planning process during
which the swept volume approximations are extensively used.
When the homotopy is applied, we do not use precomputed
swept volumes for the collision checks.

Several efficient swept volume approximation algorithms ex-
ist, such as, for example, the ones introduced in [17] and [22].
Using such advanced specific algorithms will be part of our fu-
ture work, but in this paper, we validate our framework with
a simpler approach. Since the highest priority is the evaluation
time (because approximations are used multiple times at each
iteration of the RRT algorithm), we use a generic approximation
algorithm that stores the results in compact tree structures that,
in our case, can be used to very quickly check for collisions with
obstacles of the environment. This algorithm is a slight variant
of the one introduced in [31]; the variant is presented in detail
in [30]. The use of swept volumes is widespread in robotics,
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especially for path planning (see [15] and [34]), but relatively
absent in the field of humanoid robotics, where, for the sake of
computational efficiency, simpler bounding volumes are often
preferred (see [10] and [39]).

3) Rapidly exploring random tree variant for footstep
planning: The last part of our framework is the planning phase.
Since we have a large transition model, the traditional A* search
would perform poorly. Alternatives to A* have already been
proposed. For example, in [13], Harada uses a probabilistic
roadmap method (PRM, see [21]) approach to plan footsteps: a
tree of “milestone configurations” is grown from an initial con-
figuration to a goal configuration. At first, collisions are checked
only at milestone configurations, and only once a candidate path
has been found is the full trajectory verified. An issue of this
approach is that even though the milestones are collision-free,
collisions might occur in the candidate path. Thus, the process
might have to be restarted several times, leading to lengthy
computations.

The idea of using an RRT algorithm [26] for footstep planning
was introduced in [38], where a single-node-extending and a
multinode-extending RRT methods are proposed. In Section IV,
we follow the single-node-extending method and present a new
variant of the RRT algorithm for footstep planning, where we
deal separately with the sets of left and right footsteps. When a
new transition (i.e., a new footstep) is considered by the RRT al-
gorithm, we test the corresponding approximated swept volume
against all the points of the objects that are close enough (we
suppose that the environment is known and obstacles are repre-
sented by point clouds: Each object is contained in a bounding
box, and a finite set of points is covering the object exterior
surface). If one of the points lies inside the swept volume, the
transition is discarded. Using point clouds for collision detection
is certainly neither the safest nor the most efficient approach,
but we believe that it illustrates well the performance of our
framework: Indeed, it is important to show that we are able to
rapidly plan motions even if during each iteration of the RRT al-
gorithm, the number of collision queries is high, because in real
applications, unknown obstacles are often acquired as untreated
sets of voxels or large triangle soups or meshes. Preliminary
experiments are presented in Section V, where the robot HRP-2
quickly solves complicated footstep planning problems in envi-
ronments cluttered with 3-D obstacles.

In Section VI, we improve our implementation by using
meshes to represent the swept volume approximations and the
PQP algorithm [24] for collision checks. This yields a further
speedup that enables us to perform some experiments of real-
time replanning.

Section VII contains a brief discussion on an extension of our
framework to a continuous transition model, and Section VIII
concludes this paper.

II. WALKING PATTERN GENERATOR BASED ON HALF-STEPS
AND A SMOOTHING HOMOTOPY

We use a classical simplified model of the robot dynamics:
the linear inverted pendulum model (see [19]). In this model, the
mass of the robot is assumed to be concentrated in its center of
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mass (CoM), which is supposed to be rigidly linked to and above
the robot waist at all time. Besides, the robot is supposed to have
only point contacts with the walking surface. The contact points
are coplanar on a horizontal plane. Thus, it behaves like an
inverted pendulum, and an analysis of the subsequent equations
leads to a further approximation which enables the decoupling
of the dynamic differential equations for the x-axis and y-axis.
They can be written as follows:

pr = Z(7) (1)
Py =Z(y) 2)
. A z. d

(x, y) are the (x-axis,y-axis) coordinates of the CoM of the robot,
and z, is the height of the robot CoM which is supposed constant
during the step. Let us notice that Z is a linear operator acting
on functions of time. (p,, p, ) are the (x-axis,y-axis) coordinates
of the virtual zero-moment point (ZMP). A classical balance
criterion for biped walking is that the ZMP should stay at all
time inside the polygon of support (see [37]).

In [14], Harada et al. show how analytical trajectories for both
the CoM and the ZMP can be derived from these equations. The
ZMP trajectory is a polynomial of the time variable ¢, and the

CoM trajectory (w(t) ) has the general following form:

y(t)
g ‘/]7 . g Wa: Ty (t)
o2 (7)) i)+ (56)
“4)
where 7, (t) and r, (t) are polynomials entirely determined by
P, (t) and p, (t), respectively.
From this equation, we see that for a given ZMP profile, there

are just enough free parameters (V,,, V,, W, and W) to set the
initial horizontal position and speed of the CoM:

(o) - ()
G-(Yene) e

Using these equations, next, we show how to produce the
configuration space (C-space) trajectory corresponding to an
isolated half-step. We just need to obtain a unique C-space tra-
jectory from a small number of half-step parameters (as we will
see; in our case, it will be three parameters). If each of the robot
legs has six degrees of freedom or more (the redundancy can
be treated using generalized inverse kinematics; see [27]), this
problem can be reduced to the generation of trajectories for
the waist and the feet. Besides the compulsory constant waist
height, we also made a few arbitrary and convenient restrictions
(which reduce the number of parameters): The pitch and roll
parameters of the waist orientation will stay at zero, and sim-
ilarly, the swing foot will always stay parallel to the walking
surface. Thus, the lower body trajectory is entirely defined by
seven functions of the time:

1) the waist horizontal position: z(t), y(¢) (we recall that the
waist and CoM are rigidly fixed);

2) the waist orientation: 6(t);

3) the swing foot position: SF, (t), SF,(t), SF.(t);

4) the swing foot orientation: SFy(t).

A. Producing Isolated Half-Steps

In this section, we only consider upward half-steps, but the
method for the generation of downward half-steps trajectories
is similar.

Therefore, let us consider an upward half-step. In order to
reduce the dimensionality of the parameter space, we make
several assumptions. First, we fix and denote by 7' the duration
of any half-step. Then, we assume that the initial and final speed
of the ZMP and swing foot are 0, but we do not assume that the
CoM initial and final speed are zero

p:(0) = p,(0) = p.(T) = p,(T) =0 (M
0(0) =64(T) =0 ®)
SF,(0) = SE,(0) = SF.(0) = SFy(0) = 0 )
SF,(T) = SE,(T) = SE.(T) = SFy(T) = 0. (10)

Second, the initial vertical projection on the ground of the CoM
is equal to the ZMP initial position, i.e., at the barycenter of the
foot centers. Taking the center of the support foot as the origin
of the Euclidean space, it gives us that

2(0) = p.(0) = SF;(O) (1)
y0) = p, 0) = 210 (1)

We also assume that the final horizontal position of the CoM and
ZMP coincide at the center of the support foot and that the final
swing foot orientation and the initial and final orientation of the
waist are equal to the support foot orientation (at this stage, the
orientation of the waist changes only during downward half-
steps). Besides, the line passing through the centers of the final
positions of the feet is orthogonal to this orientation

z(T) =p,(T) =0 (13)
y(T) =p,(T) =0 (14)
0(0) = 6(T) = SFy(T) =0 (15)
SF,(T) = 0. (16)

As a consequence of these equations, the final and initial
configurations are entirely determined by five parameters (as
shown in Fig. 1)

SF,(0). SF,(0), SFy(0), SF,(T), and SF. (T).

Besides concerning the derivatives at the boundaries, the only
free parameters are &(0), #(7T), y(0), and y(T'). This adds up to
a total of nine free parameters.

Now, we show how the ZMP trajectory is defined. An upward
half-step is divided into three phases: During the first one, of du-
ration ¢, the ZMP stays at the barycenter of the feet (and the feet
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Fig. 1. Here, we show an upward half-step from above. It is fully determined
by the five parameters SF, (0), SF,(0), SFy(0), SF,(T), and SF.(T). A
downward half-step is also fully determined by five parameters.

keep their positions as well); therefore, we have p, (t) = SFQ (0) ,

py(t) = S%m, and thus, p,; (t) = p, (t) = 0. Then, there is the
“shift” phase, during which the ZMP quickly shifts from its
initial position to its final position, reached at time ¢5. Then,
from ¢, to T, the ZMP stays at its final position; therefore,
we have p, (t) = p, (t) = p» (t) = p, (t) = 0. During the “shift”
phase, we set p, and p, as third-degree polynomials deter-
SF, (0)

mined by the respective boundary conditions p, (t;) = =5,

Dz (tZ) = ]5;1: (tl) = ]5;1: (t2> =0, and Py (tl) = SFJé(m > Dy (tQ) =
Py (t1) = py (t2) = 0. For the downward half-step, even if the
phase of double support and single support are inverted, we keep
the same durations: The ZMP shift occurs between time ¢; and
to. In practice, we sett; =T — 5.

Thanks to (4), if we fix SF; (0), SF,(0), £(0), and y(0), we
can get an analytical expression of the unique C? solution for
x(t) and y(t) over [0, T']. The solution is unique because during
the first phase, V,, V,, W,, and W, are fixed by the following
equations [which are obtained from (5) and (6)]:

SF,(0)

Ve = 25 = ra(0) (17
v, = SF;(O) —ry(0) (18)
We = [ (00) = 72(0)) (19)
Wy =[5 600 =7, (0)). 20)

Moreover, the unique solution during the first phase leads to
unique values for x(t1), y(t1), ©(¢1), and g(t1). This fixes the
free parameters of the unique C? extension of the solution on
[t1,t2] and, subsequently, the free parameters of the unique C?
extension over [ty, T]. Nevertheless, those two unique C? so-
lutions might violate the constraints (7)) = 0 and y(T) =0
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Fig.2. We consider the upward half-step of Fig. 1 and show the corresponding

ZMP trajectory along the y-axis: p,, (¢) (solid line). To this trajectory corresponds

an infinity of C'? solutions for y(t) which all verify y(0) = p, (0) = w,

each of them being fully defined by 7(0). We show several such C? solutions
(dotted lines); the thick dotted line is the solution retained. It is the unique one
verifying y(7') = 0.

[see (13) and (14)]. Analyzing the impact of #(0) and (0)
in the analytical solutions, we can see that they have a mono-
tonic influence over, respectively, 2(T") and y(7") and that one
value of z(T") (respectively, y(7")) corresponds a unique value
#(0) (respectively, £(0)). We implemented a dichotomic search
for those values, and with simple methods avoided problems
of numerical unstability (using the fact that with only one
ZMP shift and the boundary conditions CoM(0) = ZMP(0) and
CoM(T') = ZMP(T)), the solution CoM trajectories x and y are
necessarily monotone).

Fig. 2 considers the half-step of Fig. 1, and it shows the trajec-
tory of the ZMP along the y-axis, as well as several C? solutions
for y(t), for different values of ¢(0). Only one solution is re-
tained, the one with y(7') = 0. If the durations ¢; and T — t,
are long enough, the values that are obtained for %(0), (T'),
9(0), and §(T') can be neglected, and thus, the CoM trajectories
obtained are supposed to be C? continuous over (—00, 00). Per-
forming tests on a real humanoid robot empirically validated this
assumption: Time discretization of the control law itself makes
the neglected velocity unnoticeable. For the trajectories other
than x(¢) and y(t) (0(t), SF,(t), SF,(t), SF.(t), SFy(t)), we
simply use polynomials of degree 3 that ensure C? smoothness
and satisfying profiles, with a few specific constraints (e.g., in
our implementation, the swing foot always leaves the ground
and lands vertically). Therefore, we can completely define a
half-step with five parameters (whether it is an upward half-
step or a downward half-step). In our application, we decided
to fix the maximum height of the swing foot (SF. (T")), and the
horizontal distance between the feet when the maximum height
is reached (which fixes SF,(T")). This puts us in the condi-
tions of [23], where two “via point configurations” (),i,1,; and
Queft are fixed. With these constraints, only three parameters are
needed to completely define a half-step. Once these parameters
are set, we are capable of generating unigue analytical solutions
for the seven functions of time that are required to produce the
lower body trajectory in the C-space.
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The plot on the left shows the trajectories y(t) and p,(t) for a raw sequence of two half-steps,
CoM I ZMP with no overlap, the first half-step being the one of Fig. 1, whose CoM and ZMP trajectories are
" / shown on Fig. 2. Notice that the CoM reaches the ZMP between the half-steps. On the other plots,
we show the effect of progressively increasing the overlap, using the operators y'& and gi.
second i * o We can see that the CoM trajectory becomes more natural: it does not need to reach the ZMP curve
half-step T e - between the two ZMP shifts anymore. Indeed, the overlap works a bit
. like a preview control: the first CoM trajectory is influenced by the
’ & second one during the overlap, so it is as if it already “knew™ that
: there will be another ZMP shift, and adapted consequently.
) b
4
)
.
s~~ ~ % o “
first J T Wil W _ 103 _Az=01+d2+4da .
half-step! T ==L ON
~ -
tlmmy=0d) +a32) S| ==gh, () +gR () M| ==gh, @) 463, 2) S| =gk, (m)+ed, (@) N
T —_—ly = fﬂ’tll[f’m )+ .‘h':(l”ff:] ‘n _— .fa’l_\_l (Pyy ) + ”i. (Pyz) ‘| et ”-]_\: (py, ) + ."}3., (Pya2) ‘| — -‘*’]AH (Pyy ) Ffi:{[.“u_-}'
: | 'I SFy(0) i = }
0 —5—0 0 0

Fig. 3. Progressively increasing the overlap between two half-steps.

B. Smoothing a Sequence of Half-Steps

Using the results of the previous section, we can generate
C-space trajectories for isolated half-steps. Since they start
and finish with zero speed, we can simply join them to pro-
duce sequences of half-steps. Alternating upward and down-
ward half-steps will produce a walking motion. Each half-step
trajectory is dynamic in the sense that the inertial forces play
an important role in maintaining the balance (the trajectories
are not quasi-static). However, at the end of each half-step,
a balanced posture is reached with zero speed. This is not a
satisfactory result because between each half-step, the robot
comes to a stop; therefore, the walk motion is not visually
smooth and rather slow. Recent walking pattern generators
achieve much better results by using preview control (see [19]).
In this section, we show how to continuously modify a se-
quence of half-steps using a simple homotopy in order to make
it faster and smoother along the same footstep sequence. We first
show how to do so for a sequence of two half-steps and start
with the case of an upward half-step followed by a downward
half-step.

1) Upward Then Downward: We consider an upward half-
step followed by a downward half-step. Together, the two half-
steps make a classical full step: double support phase, then single
support phase, and then double support phase again.

We recall that the whole C-space trajectory of the lower body
during one half-step is generated by inverse geometry from
seven functions of the time. Since here we are dealing with two
consecutive half-steps (with the same support foot), we have
to consider 14 functions. Let us first consider, for example, the
position of the waist (or CoM) along the y-axis, respectively, for
the upward half-step: y; (¢) and the downward half-step: 2 ().
We have y; (T') = y2(0) = 0. Let us define two operators g
and g3 such that

fort € (0,7)

fort € (1,27 — A) @h

A= 15

) o, fort € (0,7—A)
g (f)(t)= {f(t—T+A) ~J0), fortc (T — A2T-A)

(22)

9¢ (1) + g3 (y2) corresponds to the simple concatenation of
y1 and y, without overlap. Knowing that p,, = Z(y1), py, =
Z(y2), and y; (T) = y2(0) =0, it is quite easy to verify
that for any 0 <A < T, g)(py,) = Z(g5(41)) 9a(Py.)
Z(gA (y2)). In addition, since Z is a linear operator

gA (g ) + 92 (pyy) = Z(gA (w1) + 92 (12)).  (23)

Operators gA and g3 enable us to obtain new combined CoM
and ZMP trajectories that still verify the linear inverted pen-
dulum equations [see (1) and (2)]. Starting with A =0 and
progressively increasing the value of A continuously mod-
ifies the CoM trajectory (starting from the initial trajectory
94 (y1) + g3 (y2)) to make the second ZMP shift (the one of
Dy, ) happen earlier, creating an overlap of duration A between
the two trajectories y; and y,. Fig. 3 illustrates this effect: When
we increase the value of A, we can see that the position of the
CoM does not need to reach the center of the support foot.

We use the same operators, i.e., gA and g3, to produce an
overlap between the functions of time corresponding to the waist
orientation and swing foot position and orientation. Since the
inverse geometry for the legs is a continuous function as long as
we stay inside the joint limits, these operators used on the bodies
trajectories actually implement a simple homotopy that contin-
uously deforms the initial C-space trajectory into a smoother,
more dynamic trajectory. The linearity of simplified differential
equations has already been used in a similar way to produce
mixtures of motions (see [28] and [29]), but the purpose was to
create new steps and not to smooth them nor speed them up.

In the case of an upward half-step followed by a downward
half-step, increasing A reduces the duration of the single support
phase, and therefore, it increases the speed of the swing foot. To
limit this effect, we must bound A. Besides, if A is too large,
undesirable phenomena can occur, such as a negative swing foot
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Fig. 4. We illustrate the “smoothing” of a raw sequence of half-steps. On the
initial raw sequence (left), the support paths of the ZMP and CoM trajectories
are superimposed. Then, after adjusting the overlaps, the ZMP support path
stays the same, but the CoM support path becomes smoother (right). We can
smooth even more, but it reduces the duration of the single support phase that
is directly linked with the swing foot speed. Therefore, limitations on the swing
foot speed constrain the smoothing process.

height. To avoid these problems, we set an upper bound such
that the maximum overlap results in a moderately fast gait.

2) Downward Then Upward: We can apply the same tech-
nique to produce an overlap in the case of a downward half-step
followed by an upward half-step. Since the last phase of the
downward half-step and the first phase of the upward half-step
are double support phases, the constraint on the swing foot mo-
tion disappears and the maximum bound on A becomes simply
T (that is, if {1 =T — t2, and it results in a double support
phase whose duration is ¢2 — t1).

For longer sequences of half-steps, we can simply repeat the
procedure to smooth the whole trajectory, setting the overlaps
one by one. Fig. 4 shows the results that are obtained with
an example of raw sequence. After the smoothing, the CoM
trajectory is visually smoother and besides, the new trajectory
is much faster (about three times faster).

Changing overlaps inside a sequence of half-steps modifies
the whole C-space trajectory: not only the CoM and ZMP but the
swing foot trajectory, as well. When the overlap is increased,
the swing foot tends to move faster and closer to the ground.
If one property must be preserved (for instance absence of col-
lision), it must be checked after every modification. Since the
smoothing by overlap is a continuous operator, we can use di-
chotomies to quickly find large acceptable values of overlaps.
Let us consider an example for two consecutive half-steps. We
predefine a maximum overlap Ay, ., and, first, we simulate the
part of the trajectory modified by the overlap Ay, and check
for collisions, self-collisions, and joint limit violations. If none
of these events occur, we set the overlap to A, .. Otherwise, we
use a dichotomy starting at A, /2 to quickly converge toward
the largest “good” overlap value below A .. Fig. 5 shows the
effect of the smoothing process on the swing foot trajectory:
With the dichotomy, we can quickly find a large overlap that
keeps the trajectory collision-free.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

Fig. 5. (Left) Raw sequence of two half-steps avoiding a box on the ground.
We can see that the swing foot reaches a high position. (Right) After smoothing,
the trajectory has been modified so that the foot moves very close to the obstacle.

Fig. 6. Thanks to the two via point configurations Qjef; and Qyigp¢, a raw
sequence of two half-steps can be entirely defined by only three parameters: x,
y,and 6. Qqe; and Qg1 Were chosen such that the swing foot is quite high.
This provides good obstacle avoidance capabilities to raw sequences of steps,
and in the absence of obstacles, smoothing significantly reduces the height.

III. BUILDING THE TRANSITION MODEL AND THE SWEPT
VOLUME APPROXIMATIONS

A. Transition Model

Thanks to the walking pattern generator that is described in
the previous section, we can produce isolated half-steps with
only three parameters. If we join a downward half-step with
the corresponding upward half-step, we obtain a trajectory that
goes from Qief; t0 Qright OF Qright 10 Qiefe, and which is entirely
defined by only three parameters, as shown in Fig. 6. We denote
such a trajectory (expressed in the frame of the left foot) by
(Quett, (2,Y,0), Qright) or (expressed in the frame of the right
foot) (Qright, (%, Y, 0), Qiere). We also denote that

77 = {<Qlefta (‘T7y70)7Qright> | (x7ya9) S R3}

and

I]; = {<QTighta (xay70>7Qleft> ‘ (-'I/',y79) c Rg}

We will interchangeably call the elements of 7; or 7, points
(because of the bijection with R?), transitions (because the tran-
sition model will be a finite set of elements of 7;), sequences
(each element corresponds to a downward half-step—upward
half-step sequence), or trajectories. By concatenating alterna-
tively trajectories from 7; and trajectories from 7, we obtain
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Fig. 7. Initial grid of 600 points covers the input space. To each of the 120

values of (x,y) correspond five possible orientations. All the corresponding
trajectories (which are generated by the walking pattern generator presented in
Section II) are sequences of two half-steps. We test each of them, checking for
self-collisions and joint limit violations, and remove all the unfeasible ones. The
276 remaining points form the transition model M; used for planning.

walk motions. With a symmetric robot (like HRP-2), 7; and 7,
are symmetric in the sense that the feasibility of a sequence
(Quefts (2, Y, 0), Quignt) is equivalent to the feasibility of the se-
quence (Qright, (¢, —y, —0), Quett ), and that the corresponding
swept volumes are symmetric. Therefore, only one transition
model was built, on the space 7;, but it can be used by symme-
try on 7. To build it, as explained in Fig. 7, we first covered
a reasonably large domain of 7; with regularly spaced points.
Considering the robot (HRP-2) dimensions and joint limits, this
domain was defined as the following box:

Bl = {<Qlcft7 (1’7 Y, 0)) Qright> | HAS [_035 m, +0.35 Hl]
y € [~0.37 m, —0.02 m], 0 € [~30°, +30°]}.

We covered the box B; with 600 points (15 possible values
for z, eight possible values for y, and five possible values for
), and for each point, using discretized trajectories—one for
each body of the robot legs—we verified the feasibility of the
corresponding downward half-step—upward half-step sequence.
If any self-collision (which were checked using the algorithm
that is introduced in [3]) or joint limit violation occurred, the
point was discarded.

The 276 remaining points all correspond to feasible se-
quences, and they form the transition model.

We denote by M; C B; this finite transition model; M, C B,
is defined by symmetry. We denote by S(M;, M..) the set of
finite feasible sequences (si, 2, ..., s, ), alternating left foot
and right foot support.

=] On the left, a 2D representation of a cube
moving along a discretized trajectory. We
denote its successive configurations by ep,
€1, ..., ¢q. For a point p of the Euclidean
space, C'(p) is defined as the minimum
distance from p to any configuration of
‘| the cube, minus a fixed margin 7. The
margin is important to avoid errors due to
the discretization, and besides, it makes the
level set {p € B3 | C(p) = 0} smoother,
Al thus easier to approximate.

C(p) = min (dist(p,ci)—7, i=0,...,q)

The 2D plot on the bottom-left shows how the approximation algorithm
recursively divides the Euclidean space into small boxes in order to
adaptively approximate the surface C'(p) = 0. The approximated
surface defines an approximation of the volume swept by the cube.

A view of this swept volume approximation is displayed on the 3D
plot on the bottom right.

e

Fig. 8. Example of swept volume approximation. The data structure obtained
is a bit similar to an adaptively sampled distance field (see [11]).

B. Swept Volume Approximations

For each of the 276 points of the transition model, we build an
approximation of the volume swept by the lower part of the robot
(from the knees down) during the corresponding downward half-
step—upward half-step sequence. The algorithm used is the one
described in [30]: Given a transition z € M, it learns through
adaptive sampling the sign of the mapping C., (p), which returns
the distance (minus a fixed margin, 1 cm in our case) between
a point p of the Euclidean space and the finite set of polyhedra
consisting of all the configurations of the robot legs bodies along
their discretized trajectories during the sequence corresponding
to z. Fig. 8 illustrates an example of this process. The important
property of the approximation algorithm used is that it stores
the result in a tree structure which can be evaluated extremely
quickly. The computation time saved is considerable: With the
approximation, checking whether a point is outside or inside
one of the swept volumes, we consider is done in 4 us. This
is about 2000 times faster than with the normal evaluation of
C.(p).

For a transition z = (Qiest, (¢, Y, 0), Quignt) € M;, we de-
note by V., (p) the corresponding swept volume approximation
(V.(p) > 0if and only if p is outside the approximated swept
volume). If 2" = (Qer, (z, —y, —0), Qright) € M., we can
easily obtain the approximation V. by applying a symmetry to
V.; thus, only 276 swept volume approximations are needed.
With an Intel(R) Xeon(R) 2.00-GHz CPU, it took a bit less
than 48 h to generate them all, but we believe that by using
state-of-the art swept volume approximation algorithms (and
may be only afterward apply our algorithm to obtain reapprox-
imations that can be evaluated very fast), we should be able to
significantly reduce this offline computation time.

Fig. 9 shows five of the 276 swept volume approximations.
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Fig. 9.

IV. FOOTSTEP PLANNING WITH A VARIANT OF RAPIDLY
EXPLORING RANDOM TREE

In this section, we present a simple adaptation of the RRT
algorithm for footstep planning, which is quite similar to the
one introduced in [38].

Let us first define the search space. Since, in our formal-
ism, we connect single support phases, the search space is
S = {(q,x,y, 0) | q € {Qleft’ Qright}’ (J?,y, 9) € Rg}’ where
q is the support foot, (x,y) is the position of the support foot
(relatively to a fixed reference), and 6 is its orientation (relatively
to a fixed reference). The transition model being an alternation
between M; and M,., we can apply transitions to states of the
search space using the operator J:

0 ((¢:7,9,9), (g, («',y,0'),0))
= (g, 2'cos(0) — y'sin(0), 2'sin(0) + 3/'cos(6),0 + 0')

where Qlett = Qright and Qright = Qlere. In practice, we will
use only a compact subset of the search space, depending on
the environment £. We denote it by S|¢. For example, if the
robot stays in a 5 m x 5 m room, we naturally use these dimen-
sions to define S|¢ and bound x and y. Considering the classical
RRT algorithm (see [26]), the only operation that cannot be
straightforwardly adapted to the context of footstep planning is
the extension toward random samples (to find the nearest neigh-
bor, we use the Euclidean metric, ignoring the orientations). Let
(q,2,y,0) € S be a random sample of the search space and
(¢',2',y,0) the nearest state in the search tree. In [38], two op-
tions are considered: Either add to the tree all the successors of
(¢',2',y,0") or just one random successor. Because of the size
of our transition model, we chose to follow the latter strategy.
Fig. 10 shows one issue of this approach: In some cases, it is
difficult to extend the search tree toward a given region. To cope
with this problem, many options are possible. We simply chose
to alternatively look for nearest states with left support foot and
nearest states with right support foot. It leads to our RRT variant
that is presented in Algorithm 1 (we stop the while loop when
a path to the goal region has been found or when a sufficiently
short path has been found). We based our implementation on
a fast and modular open-source code by Karaman and Fraz-
zoli which uses kd-trees for fast nearest neighbor queries (this
code implements RRT and RRT*, i.e., the algorithms introduced
in [20]).

Three-dimensional representations of five swept volumes approximations.
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Fig. 10. Advantage of separating left and right support feet during nearest
neighbor queries. (Left) (global nearest neighbor): All the points in the gray
region have the same nearest neighbor (Qign¢,,y,6), but no successor of
(Qright: =, y,0) is inside the gray region. Therefore, numerous samples are re-
quired before extending the search tree toward the gray region. (Right) (alternate
nearest neighbors): When only states with left support foot are considered, the
nearest neighbor will not be (Q,ignt, z, ¥, ¢) but may be one of its successors.
With the alternation strategy, the search tree is more likely to quickly grow
inside the gray region.
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Further analyses and improvements of the variants of RRT
for footstep planning can probably help to obtain faster results
but are out of the scope of this paper.

V. PRELIMINARY EXPERIMENTS

The framework presented in this paper was experimentally
tested on the robot HRP-2.

We studied the two experimental setups that are described
in Fig. 11, where 2-D obstacles (i.e., holes in the ground) are
combined with 3-D obstacles. The 3-D obstacles that are shown
in Fig. 11 have the same size as the ones in the real environment
(see Fig. 12) but are smaller than the ones used for the collision
checks (a margin is needed because of the robot drift during the
real-world experiments).

The construction of the solution trajectory is divided into
two parts: First, during the planning phase, just as explained in
the previous section, we use a specific variant of RRT to find
a sequence (S1,82,...,8,) € S(M;, M,) which reaches the
goal. Then, we use the homotopy of Section II-B to smooth the
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Algorithm 1 RRT variant for footstep planning
T.init(x;,: € S|g)

1:
22140
3: stop_condition < false
4: while —stop_condition do
5. Pick a random state Tyqna € S|
6: 1++
7. if 7 == 0 mod 2 then .
. . - { among states with left support foot,
’ near nearest neighbor of Z;,4,q in the tree T
9: Pick a random transition $,qnq € M;.
10:  else L.
. Ty { among states with right support foot,
' nearest neighbor of x,,,4 in the tree T
12: Pick a random transition S,q4nq € M.
13:  end if

14:  Using the approximated swept volumes, verify that
starting from state Z,eqr, the transition $,q,q does not
collide with any point of the obstacle point clouds.

15:  if NO COLLISION then

16: T.add_node(6(Znears Srand))

17: T-add_edge(xnear’ Srand 5(zTL6(L7') Sv‘and))

18: if §(Tnear, Srana) is close enough to the goal and
the path to §(Znear, Srana) is short enough then

19: stop_condition < true

20: end if

21:  end if

22: end while

number
number | of calls to the

of steps of | swept volumes

solution [the solution | approximations

time to
reach a

Setup 1: the goal RRT variant: (average on 10 attempts)

is to touch the

circled zone with © 8.60s| 2I1.1 steps 1,700,000
one foot.
A% search:
7.14s| 6 steps 1,560,000

' 7 RRT variant: (average on 10 attempts)
Setup 2: the goal -hg

is to touch the

243 steps| 1,920,000

circled zone with
one foot.

A* search:

FAIL - -
(= 10min)

Fig. 11.  Experimental setups and results of the planning. The computations
are made with an Intel(R) Xeon(R) 2.00-GHz CPU. Remark: In Setup 1, the
exterior surface of the 3-D obstacles (the boxes on the ground) is covered by
250 points. In Setup 2, the exterior surface of the 3-D obstacles is covered by
75 points.

Fig. 12.  Experimental results: the robot HRP-2 executing planned trajectories.
(Above) So-called toy problem of walking in a child’s bedroom avoiding toys
on the ground.

sequence (1, $2,. .., 8, ) to obtain the final fast and dynamic
trajectory that will be performed by the robot.

A. Planning Phase: Rapidly Exploring Random Tree Versus A*

We implemented a classical A* search algorithm and com-
pared it with the RRT variant that is introduced in the previous
section. For the costs required by A*, we used a simple heuris-
tic where the estimated remaining cost is derived from the Eu-
clidean distance, and the cost of a path is the sum of each (fixed)
transition cost. Better heuristics can often be obtained, such as,
for example, heuristics derived from a mobile robot planner that
looks for continuous paths between the initial position and the
goal, but because they do not take stepping over capabilities
into account, such heuristics tend to severely misjudge costs in
very constrained environments like the ones that we consider
here (for a review on the association { A* + heuristic }, see
[5, ch. 8]). Finding a robust heuristic that would perform well
in challenging environments is as hard as solving the problem
without using A*: That is why we tried to directly apply RRT.
Other approaches of interest include planning algorithms that
are based on inflated heuristics (see [12]): They usually find
solutions faster than a classical A* search, but they are not as
efficient as RRT to avoid local minima. Their main advantage
over RRT is that they provide suboptimality bounds; however,
because of the particularity of the problem of footstep planning,
it is not clear whether such bounds can still be obtained in our
context. Finally, it might be interesting to try to adapt control-
based strategies such as [35], but the adaptation would be far
from straightforward.

In Setups 1 and 2, we fixed an upper bound and stopped the
execution of RRT or A* as soon as a path of cost smaller than
this upper bound was found.

As shown by the results in Setup 1, without strong local
minima, the time that is needed by RRT and A* to find a solution
is approximately the same, but A* finds a better trajectory cost
(it finds solutions with fewer steps).
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On the other hand, we can see with the results in Setup 2
that when the transition model is large, A* seems much more
sensitive to local minima than RRT: Indeed, A* fails to find a
solution on Setup 2, whereas the RRT method consistently finds
solutions in less than 40 s (and 29.8 s on average).

This is easily explainable because A* usually has to explore
a subtree of fixed height i (which depends on the heuristic costs
used) before being able to avoid a local minimum. Therefore,

it will try about (JM|" — 1) (I/\‘/lj\l/tf‘l) transitions (] M| being
the size of the transition model) before overcoming the local
minimum. This can be done if both | M| and h are relatively
small, but since, in our case, | M| = 276, the complexity can
quickly become insurmountable.

As a randomized approach, RRT does not have this caveat,
and that is why, we think it is more suitable than A* when the
transition model is large.

A remark on the time saved thanks to the swept volume
approximations: In Setup 1, whose environment contain a lot of
points (i.e., 250), we can see that during their execution, both the
RRT variant and A* make about 200 000 calls to a swept volume
approximation every second. Without the approximations, these
200 000 calls would be replaced by more than 26 min spent in
collision checking.

B. Smoothing Phase

Once a trajectory avoiding the obstacles has been found by
the planner, since it consists in a concatenation of isolated half-
steps, we can use the homotopy that is described in Section II-B
to smooth it. One overlap parameter has to be set for each pair
of consecutive half-steps, and since the overlaps are indepen-
dent, they can be set sequentially. This means that we can start
to execute the trajectory on the robot even if only a few initial
overlaps have been set, the next overlaps being computed during
the execution of the trajectory. Let us notice that the dichotomy
search for the best overlap time is an “any-time process” that can
be interrupted if computation time is too long, the current result
being no worse than the initial raw motion. Another important
remark follows: Since we cannot know in advance the swept
volumes for the trajectories that are involved in the smoothing
processes, we have to use classical collision checks. We mea-
sured the overlaps computation time for ten raw sequences of
half-steps that are obtained in Setup 1 and ten raw sequences that
are obtained in Setup 2. In all cases, the duration of the smooth-
ing was less than the final trajectory execution time. For the
solutions in Setup 1, the average time needed for the smoothing
was 14.4 s, and the average execution time of the final trajectory
was 31.1 s. For the solutions in Setup 2, the average duration of
the smoothing was 13.4, and the average execution time of the
final trajectory was 41.6 s. Fig. 13 illustrates the effect of the
smoothing on the foot trajectories.

VI. MORE ADVANCED IMPLEMENTATION

The way we deal with collisions in the preliminary experi-
ments is clearly not optimal: We represent obstacles by covering
them with points on their exterior surface, and all the points are
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Fig. 13. (Above) Raw sequence of two half-steps. (Below) Smoothed se-
quence. When there are no obstacles, the swing foot trajectory of the smoothed
sequence depends on the minimum time between two ZMP shifts, which is fixed
in advance in order to bound the speed of the feet.

always taken into account. The results showed that the swept
volume approximations can be called a great number of times
in a short period, proving that significant speedup can be ob-
tained compared with frequent collision checks along a priori
unknown trajectories. What is more, in some case, point clouds
are a very natural input, and it would be interesting to see if
we can organize them in a good structure so that to use our
approximation functions in an efficient way. This is beyond the
scope of this paper, but we can already obtain better results by
using state-of-the-art collision detection algorithms. First, we
can notice that our swept volume approximations are defined by
intersections of small boxes with planes. Thus, it is easy to con-
struct meshes that describe the swept volume approximations
(we actually use simplified meshes, i.e., they have a slightly sim-
pler geometry than the initially precomputed approximations).
With these 276 meshes, we will use the PQP algorithm [24] for
collision checks. The main advantage we obtain by doing so
is that when the obstacles are represented by classical meshes
as well, PQP stores them in bounding volume hierarchies that
reduce the complexity of collision checks.

With this method, a significant speedup is reached: With the
Setup 2 in Fig. 11, we performed 1000 trials with a slightly
faster CPU (Intel(R) Xeon(R) 2.40-GHz) but overall in similar
conditions. A solution was always found, and the average time
required was only 1.60 s, which is almost 20 times faster than the
preliminary results. The average number of steps of the solution
was 28.5 steps, and on average, 18 000 collision checks were
needed before finding a solution.

With this new implementation, we tested our algorithm in
more complex environments in simulation and also used it to
perform real-time replanning in experiments, where the posi-
tion of the robot and obstacles is acquired by motion capture.
The details of the framework used for these experiments are de-
scribed in [2]. Fig. 14 shows two simulations, and Fig. 15 shows
an experiment during which a bar placed 5 cm above the ground



PERRIN et al.: FAST HUMANOID ROBOT COLLISION-FREE FOOTSTEP PLANNING USING SWEPT VOLUME APPROXIMATIONS 437

Fig. 14.  (Left) Sequence of steps found in a complex environment. (Right) We
show for one sequence of steps the concatenation of the swept volumes, which
are simplified meshes obtained from the original swept volume approximations.
For the upper body, simpler bounding boxes are used for the collision checks.

Fig. 15. (1) HRP-2 starts to execute the sequence initially found. (2) Bar is
suddenly moved, and the current sequence of step would lead to collisions. (3)
While walking, HRP-2 is able to compute a new sequence of steps toward the
goal (we show the concatenation of the swept volumes which indeed avoid the
bar). (4) Robot finally steps over the bar while, at the same time, it tries to
optimize the rest of the path towards the goal. Remark: Due to uncertainty on
positions, we use a model of bar that is thicker than the actual bar.

is moved, while the robot is executing its initial plan. The robot
is then able to quickly find a new plan and successfully steps
over the bar in its new configuration before reaching the goal.

VII. DISCUSSION ON AN EXTENSION TO CONTINUOUS
TRANSITION MODELS

Even if the expressiveness of a continuous transition model
can be approached by the one of a large finite transition model,
a continuous transition model would still be preferable.

Several useful techniques would be easier to apply with a con-
tinuous transition model: local footstep modifications (see [8]
and [9]), extraction of convex regions in the transition model in
order to use optimization techniques to determine foot place-
ments [16], path deformation, [18], etc.

RRT and other sampling-based algorithms (e.g., PRM, see
[21]) would be easier to adapt with a continuous transition
model; therefore, it would cause no problem at the planning
phase. Besides, it would not be difficult to approximate the
feasibility regions so as to obtain continuous transition models
M; and M, (although it might be hard to obtain the guaran-
tee that all transitions are indeed feasible). However, then, the
main issue would be the need to approximate swept volumes
which depend on a continuous parameter z € M;; instead of
approximating (the sign of) C (p) for a finite set of values of z,
we would need to approximate C'(z, p), which depends on six
parameters. It no longer corresponds to the approximation of a
single swept volume; therefore, the state-of-the-art algorithms
for swept volume approximation cannot be directly used, and
we would probably need to keep a generic approximation al-
gorithm, like the one used in this paper. Since it took already
almost 48 h to approximate the swept volumes of the finite
transition model, for a continuous transition model, an accurate
approximation would probably be excessively time consuming.
In that case, it is likely that instead of trying to compute the
swept volumes more efficiently, other collision detection rou-
tines should be taken into account, such as continuous collision
detection [40], GPU-based approaches [25], or other variants
(see, e.g., [33] and [36]).

VIII. CONCLUSION

In this paper, we have described a novel and coherent frame-
work for footstep planning, which includes a walking pattern
generator based on half-steps, a simple homotopy for trajec-
tory smoothing, swept volume approximations for fast collision
checking, and an RRT variant for footstep planning. We used
this framework on the robot HRP-2 to quickly plan dynamic
sequences of walk in environments cluttered with 3-D and 2-D
obstacles. Although computed in a few seconds and with the
theoretical guarantee that they actually avoid the obstacles, the
executed trajectories seem very natural: no pauses, no exagger-
ated motions to avoid small obstacles, and a large diversity of
foot placement.
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