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Abstract—We propose a self-assembly and self-repair method
for a homogeneous distributed mechanical system. We focus
on a category of distributed systems composed of numbers of
identical units which can dynamically change connections among
themselves. Each unit has an on-board microprocessor, and local
communication between neighboring units is possible. In this
paper, we discuss a distributed method for a group of such
units to metamorphose from an arbitrary configuration into a
desired configuration through cooperation by the units. This
process, called self-assembly, is realized by identical software on
each unit with local inter-unit communication. An extension of
self-assembly, self-repair, is also examined. In this process, an
occasional cut-off of an arbitrary part of the system is assumed.
When some part of the system detects damage, the whole system
degenerates and reconstructs itself. Computer simulations show
the feasibility of self-assembly and self-repair.

Index Terms—Distributed mechanical system, self-assembly,
self-repair.

I. INTRODUCTION

A NOVEL structure of a mechanical system is presented
in this paper—a homogeneous structure in which all

the components of the system are identical. Each component,
called aunit, is an active mechanical element which is capable
of information processing and changing local connections with
its neighbors. These units cooperate autonomously to form
the given shape of the whole system (this function is called
self-assembly), and reconstruct damaged parts without outside
assistance (self-repair), as shown in Fig. 1.

In homogeneous systems, each unit is replaceable by other
units, which makes the procedure of self-assembly and self-
repair very simple compared with heterogeneous systems.

Replaceability: All the units are the same, have the same
functions, and can be replaced by any other units.

Moreover, homogeneous systems have several advantages:
Reduction of production/maintenance cost:The homo-

geneity of the components is effective for mass production,
and also simplifies inspection and maintenance procedures.

Design freedom:One can freely design the system by con-
necting the units like LEGO blocks.

Scale extensibility:A homogeneous system is capable of
scale extension or contraction; the scale of the system can be
changed by adding or removing units.
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Fig. 1. Self-assembly and self-repair process of homogeneous system.

Homogeneous structures are common in nature; living
things are made of cells, and the cells store identical
genetic information. Many studies have been inspired by
the homogeneous structures of natural things, and there is
great potential in the design of homogeneous systems made
of mechanical units.

In this paper, we concentrate on the software of self-
assembly and self-repair, without any detailed discussion about
the design of the unit hardware. The model is based on
hardware we developed.

First, we propose decentralized software for self-assembly
that is applicable to large systems composed of hundreds of
units. It enables the units to assemble a pre-designed shape
under two assumptions: system homogeneity and locality of
communication. We introduce a method to locally describe
and construct the complicated goal shape in a developmental
fashion, which is a key technique in large-scale assembly.

We then extend the concept of self-assembly to “self-
repair” by utilizing the developmental structure. In self-repair,
the system can recover its original shape following arbitrary
damage by backtracking the development process.

Self-assembly and self-repair are indispensable in many
areas that human operators cannot access. This study will lead
to a novel methodology for designing systems that operate
continuously without outside help (e.g., in space, deep sea and
nuclear power plants). Reconfigurability enables constructing
many shapes, and thus performing many functions, using the
same units. In space application, for instance, after transporting
the units in a compact form, we can construct a solar panel
at first, and then change it into an antenna. In the micro scale
version, it will be possible to transport units in a narrow pipe
and carry out some functions in another shape. Functions can
be changed according to the number of units, and by supplying
additional units, we can easily extend the system. Moreover, in
these applications, fault tolerance is quite important because
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external assistance cannot be expected. In our system, even
when several units are damaged, the whole system can repair
by itself.

This paper consists of eight sections. We summarize related
work in the following section, describe the unit hardware
briefly in Section III, and introduce an assembly method
for a small system in Section IV. In Section V we show
a method for developmental self-assembly. A method for
self-repair, which is an extension of self-assembly, is given
in Section VI. Simulation results are included in these two
sections. We discuss limitations and extensions of the method
in Section VII. Section VIII concludes the paper.

II. RELATED WORK

Many studies have been inspired by the homogeneous
structures of natural things. We will now summarize the
research in both hardware and software.

The first and most important research in this field is von
Neumann’s Theory of Self-Reproducing Automatain 1966
[1]. In this book, he gave the detailed design of a self-
reproducing pattern on a plane of cellular automata. Using
the model, he opened a path to theoretical representation of
self-reproduction. Unfortunately, it is not easy to apply his
work to the design of a physical system since it is very
abstract. Nevertheless, many followers continued the research
of cellular automata, and a considerable number of studies
have been conducted [2]–[9].

In contrast, few attempts have so far been made to construct
“real” homogeneous artificial systems, due to many physical
limitations such as geometric and dynamic constraints. Penrose
made a brick model which symbolizes the metabolic process of
living organisms [10]. The bricks connect to each other with
simple interlocking mechanisms. Since the model does not
have any information processing functions, it exhibits only
very primitive behavior. The rapid progress of electronics
made various microdevices available, and several artificial
homogeneous systems using microchips appeared after the late
1980’s. Ichikawa’s “one-dimensional self-reproducing robot”
[11] is an extension of Penrose’s brick model. In the system,
each brick has small driving wheels controlled by an on-board
microprocessor and exhibits behavior similar to Penrose’s
model. Kokaji made a complex link mechanism called a
“fractal machine” [12], which is made of identical triangular
link units. Each unit is equipped with a microprocessor, and
a network of microprocessors effectuates an inchworm-like
movement of the structure. Homogeneity of both the physical
structure and the software are realized in this system.

Several robotic systems made of “reconfigurable” mechan-
ical units have recently been proposed. These systems can
change their shape autonomously.

We made a two-dimensional mechanical unit called a “frac-
tum” [13] that utilizes electromagnets for the connection, and
verified by experiments its basic functions, such as the change
of connections between units, transportation of units, and
information exchange between units. Along with the hardware
research, we developed homogeneously distributed software
for self-assembly. Using this software, a system composed

of ten units can start from an arbitrary configuration and
metamorphose into any desired shape by cooperation through
local information exchanges.

Chirikjian and Pamecha proposed a mechanical unit which
has basically the same functions as ours [14]. The unit is a
hexagonal link equipped with three servo motors for changing
angles between adjacent links. The unit can change its local
configuration by a combination of changing the shape of
the links and the connecting mechanism between the links.
Although the mechanical structure of this unit is complicated
compared with our fractum, their unit has almost the same
movement capability. Moreover, the mechanism is suitable
for constructing a rigid structure and generating large torque.
Another type of unit they proposed is a square-shaped unit with
a sliding mechanism [15]. The unit has a sliding-connecting
mechanism on each side.

Fukudaet al. proposed a type of hexagon-shaped mechan-
ical unit [16]. It is one of various versions of a cellular
robotic system called “CEBOT.” Their unit has a function
of connection and release between the units. When the units
change configuration, a unit releases the connection, moves to
the next position by itself, and reconnects again.

The features of our fractum compared with other units are
as follows.

1) It has a simple mechanism.
2) It satisfies homogeneity of both software and hardware.

There are several ongoing projects to make 3-D recon-
figurable systems [17]–[19]. Although these are still in the
conceptual stage, they indicate the feasibility of a realistic
3-D reconfigurable structure.

Little research has been conducted on assembly software.
Lindenmayer proposed a mathematical model of devel-

opment [20]. It is called an L-system and describes the
development process based on cell division, which is difficult
to realize through conventional mechanical units.

A self-assembly model of a bacteriophage was proposed
by Thompson and Goel using movable finite automata [21]. A
bacteriophage is constructed based on the interaction of protein
subunits. In this model, the subunits are assumed to have
connection points and can connect freely with other subunits
according to their parameters, if they are close enough.

These assumptions (cell division and connection mech-
anisms) are not realistic with respect to current hardware
technologies. Moreover, their purpose is the understanding of
the biological development process, not engineering applica-
tions.

Chirikjian et al. proposed a configuration method for their
units [14]. It is intended for optimality from a centralized point
of view. Another method was proposed by Beni using ring
structures [22].

In this paper, we assume the actual hardware units described
in the following section, and describe self-assembly and self-
repair.

III. H ARDWARE UNIT

We adopted a strict homogeneity of the structure, i.e., all
the units in the system are of the same kind. This helps in
making the system’s design less complicated.
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Fig. 2. Schematic of the unit.

(a)

(b)

(c)

Fig. 3. Basic functions: (a) connection change, (b) connection cut, and (c)
transportation.

We assume that each unit has an information process-
ing capability and communication channels with neighboring
units. A capability to change local connections among the
units is also assumed. This capability is necessary to realize
autonomous reconfiguration and replacement of (faulty) units.

We developed a two-dimensional (2-D) mechanical unit,
called a fractum, which has the above capabilities. Fig. 2
shows a schematic view of the unit. Each unit has six con-
necting arms, three male and three double female arms. Each
connecting arm is equipped with an electromagnet (male arm)
or a pair of permanent magnets (female arm). All of the
permanent magnets have the same polarity. If the polarity
of the electromagnet of a neighboring unit coincides with
the polarity of the permanent magnets, then the electromag-
net is pulled into the gap between the permanent magnets.
Disconnection takes place simply by reversing the polarity
of the electromagnet. An on-board microprocessor controls
the connection/disconnection of these arms independently.
In addition, the on-board processor can communicate with
neighboring processors by means of an optical transmitter and
a receiver embedded in each connecting arm. Fig. 3 illustrates
the basic movements of the units—Fig. 3(a) changing the
connecting position, Fig. 3(b) cutting the connection between
units, and Fig. 3(c) transporting a unit along the periphery
of the unit group—which are possible through appropriate
switching control. More complicated functions, such as form-

Fig. 4. Simple representation.

Fig. 5. Step movement.

ing or rearranging the shape, are possible by combining
these basic movements. The simplicity of the unit structure
(for instance, there are no internal moving parts) is very
advantageous for micro-scale production. In the micro-scale
version, electrostatic force instead of electromagnetic force
might be used as the driving force of the units.

Hereafter, to concentrate on the software side of the system,
we abstract the unit hardware and introduce a simplified model
and representation of the unit.

Model of the unit: The unit is represented by a circle with
six lines, as shown in Fig. 4. Each line corresponds to a
connection arm. The unit can rotate using the connection arm.
Each unit is capable of communication with the adjacent units.

We often omit connection arms that are not connected. The
connection change in Fig. 3(a) can be described as Fig. 5. This
connection change, i.e., rotation by 60, is one step movement
of the unit. (The middle state in the figure is regarded as
transient.)

In the following part of this paper, we will introduce a
method for self-assembly and self-repair by using the above
model of reconfigurable units.

IV. SIMULTANEOUS ASSEMBLY

In this section, we summarize the method of self-assembly
which we had already developed [13].

This method is designed for a small system that includes
about 10 units. The target of the method is self-assembly, to
form a desired shape from an arbitrary initial configuration.
We assume homogeneity (in particular, each unit has the same
program) and locality (i.e., each unit can communicate with
neighbors only).

In the method, a global target configuration is embedded in
every unit and is described by a collection of local connection
specifications.Connection typesare introduced to represent
the local connection.

The connecting state of each unit is represented by the
arrangement of the connecting arms. The arrangements are
classified into twelve types, which we callconnection types,
as shown in Fig. 6.

Using the connection type, we can describe the global
configuration. For example, consider a triangle composed of
ten units (Fig. 7). In the figure, the symbols indicate the
connection types of the units. This configuration is described
by three statements
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Fig. 6. Connection types.

Fig. 7. Triangular configuration.

These statements describe three different local connective
conditions in the configuration (i.e., corner, edge, and center).
In each statement, the first letter indicates the type of the
unit itself, and the letters in braces indicate the types of its
neighbors. (These types are sorted in a fixed manner.) For
instance, the second statement asserts that “there is a type K
unit which connects with one type o unit, two type K units,
and one type s unit in the final configuration.”

Self-assembly proceeds as follows. Each unit evaluates the
difference between the current connecting situation (connec-
tion types of itself and neighbors) and the goal statements. It
then moves randomly if the difference is not 0. The frequency
of the motion is decided according to the magnitude (degree)
of the difference. By repeating this process, the overall system
converges to the target configuration. In a simulation study,
the success rate was 97% in assembling a triangle made of
ten units. (Non-success includes two cases: the terminated
assembly of a different shape and a nonterminating assembly
activity in a fixed time.)

This method is simple and very effective when the system
is small and the target configuration is symmetric. However,
the efficiency declines for large scale construction. For ex-
ample, the success rate in the case of a triangle made of 15
units (described by four statements) dropped to 73%. As the
target configuration is described by local connections only,
it is difficult to generate enough driving force to the global
configuration. Also, the method is not suitable for constructing
shapes with less symmetry, because goal statements becomes
long and complicated, which make the assembly difficult.

V. DEVELOPMENTAL ASSEMBLY

In this section, we propose a new method of self-assembly
for large-scale construction, which is analogous to the de-
velopment process of living things. A target configuration is
embedded in every unit, which is similar to the genetic infor-
mation in the DNA of living things. Mechanical units cannot
divide, which is the critical difference between mechanical
units and living cells. We will therefore provide a sufficient

Fig. 8. Nucleation method.

number of units from the beginning, and design a configuration
method in which the units can be moved to the correct places.

The conceptual outline of the method is as follows. We
assume that we have a set of connected units with an arbitrary
shape. First, it chooses a unit as the origin of the construction.
This unit is called thekernel. Next, the kernel gathers adjacent
units to compose alogical connection networkaccording to
the embedded plan. This network is the first stage. The units
involved in the first stage network then gather some surround-
ing units and form the second stage network. Repeating this
process increases the stages, and the network grows stage by
stage, approaching the target configuration. In this method, a
unit joining the network mimics the biological differentiation
process. The units in the network are called ,
and others are calledundifferentiated.

Fig. 8 illustrates the three main points of the method—the
kernel, the hierarchical development of the connection net-
work, and the circulation of undifferentiated units. We call this
a because the network grows layer by layer
from a unit, like the development of snowflakes. Compared
with the method in the previous section, the difficulty in
construction is drastically reduced by introducing the layer,
because it acts as a kind of coordinate system and reduces
the volume of search spaces. In the following sections, we
will describe the method, first as an outline and then in detail,
along with some simulation results.

A. Outline of the Method

1) Logical Connection Types:We introduced the connec-
tion types in Section III. Now we will define another kind of
connection type, called alogical connection type. Hereafter,
the former connection type will be calledphysical connection
type.

If two units have a physical connection, and they estimate
the connection to be a part of the target configuration, it is
called a logical connection. In addition to the twelve physical
connection types in Fig. 6, logical connections have another
type, “n,” which indicates that a unit has no logical connection.

2) Description Matrix: In the nucleation method, all units
have an identical blueprint of the construction. It is called a

, and includes all the necessary information
for the self-assembly process. It is represented in the form
of the lower triangular matrix shown in Fig. 9. The symbol
“–” indicates that the units keep the same logical type of the
previous line.
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Fig. 9. Description matrix.

Fig. 10. Location indices.

Each line of the matrix describes a temporary goal (sub-
goal) of the logical connection network. When this sub-goal
is globally reached, the sub-goal is changed according to the
next description, as the stage numberis incremented. Then,
each unit in the network tries to find additional units to satisfy
this new sub-goal. Thus, the logical connection network grows
layer by layer.

Besides the stage numbereach unit possesses a number
called a location index denoted byThis number is initially

except that the kernel unit has the value When the
unit with joins the network, is set to some number.
Once it is set, it does not change. Each unit accesses the
description matrix with two variables,and and determines
which logical connection type it should take in the sub-goal
network.

The description matrix of Fig. 9 corresponds to a pinwheel-
like shape of 25 units (Fig. 10). Each number in Fig. 10
indicates the location index, and the lines indicate logical
connections.

By using the description matrix, the units expands the
logical network until the target configuration is constructed.
We illustrate these steps using the same example. The logical
network in each stage is shown in Fig. 11.1 Only the kernel
exists in the logical network in the initial state. The second
row “(Y e)” of the description matrix indicates that the kernel

should take logical type “Y,” and should try to
establish logical connections with three2 of the surrounding

1The logical network is usually surrounded by undifferentiated units, which
are omitted in the figure.

2In this description method, the number of units to be added to the logical
network in each stage is not explicitly given in the matrix. Instead, it is
determined implicitly by the consistency of the network. Also, in this example,
there are two possible locations for these three units. It is not explicitly
determined.

Fig. 11. Logical network in each stage.

units. The three units added in the network should take type
“e” and their location indices are set 1. Thus, the first stage
network is formed. Then the stage number is incremented and
the sub-goal is changed as the third description “(s o o).”

Each unit in the connection network changes its logical
type according to the plan, and at the final configuration the
physical types coincide with the logical types3. Apparently,
many different routes are possible to achieve the same target
configuration, thus many description matrices exist for the
same goal configuration.

B. Procedures of Nucleation Method

1) Structure of One Step Execution:We assume that all the
units share a synchronized clock. This is accomplished by the
method introduced in [23] under the restrictions of homogene-
ity and locality.

The structure of the self-assembling procedure is simple.
Each unit repeats the following procedures synchronously,
after executing the “kernel selection” procedure once at the
beginning.

1) Joining logical network (Undifferentiated units get loca-
tion indices if possible).

2) Constructing logical connections (Units search for the
direction of the logical connection).

3) Stage update (Units evaluate the completion of the
current stage network, and increment their stages if
completed).

4) Unit circulation (Units on the periphery circulate coun-
terclockwise).

One execution of procedures 1) through 4_ is called astepof
the nucleation method.

It is a distributed parallel process and also homogeneous.
At the initial state, each unit has the same program and data
(values of variables). Communications between adjacent units
are performed in each procedure. All information transferred
between units is an integer value, such as the random number
for kernel selection, physical type, stage, and logical connec-
tion request. Each procedure is described in the following
sections.

2) Kernel Selection:In the first stage of the nucleation
method, it is necessary to choose a particular unit from which

3If the system has spare units, physical types and logical types are not
necessarily the same around the spare units when the target configuration has
been constructed.
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self-assembly starts among the units. Note again that all the
units are driven by identical programs. In the Appendix A,
we will show one possible method, which is based on random
number generation.

The kernel sets and when it is chosen. (Other
units have and )

3) Joining Logical Network:At the beginning of each rep-
etition of the step, the undifferentiated units try to join the
logical connection network.

Joining Logical Network:An undifferentiated unit (unit A)
is called a {\it candidate unit} if it detects that its adjacent
unit (unit B) is already involved in the network, and that B
has a logical connection arm (request) to A. When A becomes
a candidate, it tentatively sets its location index and stage. The
values are the same as the stage of unit B. (If the stage of unit
B is unit A sets and )

The candidate units extend logical connection arms accord-
ing to the connection types decided by its stage and location
index.

4) Constructing Logical Connections:Because there is no
information about the directions of logical connection arms in
the description matrix, each unit must find appropriate ones
by itself. For instance, if a unit is assumed to take logical type
“o,” the unit needs to ascertain which two arms should be
connected among its six arms. (This is performed by both
differentiated units and candidate units.) We will omit the
detail, but each unit tries one possible direction in each step,
and finds appropriate directions of logical connections after
some steps. Thus, the logical connection network fits the new
units into itself in the correct direction. In the process, some
candidate unit may becomes noncandidate again.

5) Stage Update:We will describe here how the units
locally confirm the global completion of the logical network
at each stage and proceed to the next stage. The completion
is defined as follows. A unit is calledsatisfiedif and only
if all the logical connection arms of the unit are connected
with other units’ logical connection arms. Thecompletionof a
connection network at any stage indicates that all the units in
the connection network are satisfied. (To be precise, connec-
tion network described here is composed of both differentiated
units and candidate units.)

The decision of completion of a stage must be performed
locally in a distributed manner. Each unit evaluates local com-
pletion of the connection network of each stage by exchanging
values called . If the value exceeds the threshold

then the unit deems that the stage has been completed
locally for that unit.

Completion of the network at each stage can be decided by
the following method [12].

Least completeness propagation:Each unit decides the
completeness of the current stage as follows: If the unit is
satisfied, then it detects the completeness in the same stage of
its logically adjoining units, and lets the minimum value be

The new completeness of the unit is then If the unit
is not satisfied, the completeness is 0.

Using this method, if the logical network of a stage is
completed, each unit increments the completeness of the
stage, and finally the value exceeds the threshold. Note that

all the units do not necessarily proceed to the next stage
simultaneously. More precisely, if every unit in a circle of
radius4 is satisfied in the current stage, then the center
unit proceeds to the next stage.

When the units update their stages, candidate units become
differentiated, and the location indices are fixed to the tentative
value. The units in the completed network change their logical
types according to the description matrix. Thus, in the next
step, the units can try to extend the logical connection network
by adding logical connection arms.

6) Unit Circulation: We devised a method of supplying
units to necessary places. In the nucleation method, as the
stage proceeds, the connection network expands beyond the
(physical) edge of the units. If it is possible to supply un-
differentiated units to those places, the logical network can
grow, as long as there are some undifferentiated units, and it
will form the target configuration.

Because the periphery of the units is a closed curve, units
can be simply supplied by the following method:

Unit supply by circulation: We divided physical types into
movable and unmovable. If a unit is of a movable physical
type and is undifferentiated, then it moves one step counter-
clockwise at the probability of

By this method, undifferentiated units circulate on the
periphery counterclockwise. This is simple but needs some
modification as shown in Appendix B.

C. Simulation

We demonstrated the feasibility of the method using sim-
ulations. The main parameters of the method were
and These values must be chosen carefully since these
parameters affect each other. For example, if we require

to be large, which means that a stage of a unit is not
updated until all the units in large radius are satisfied,
then we need to take small to suppress the supply of
undifferentiated units. Otherwise, the network cannot complete
the stage because even units in the correct position move too
often. However, if this is performed to excess, completion
becomes very slow due to stagnation of the unit supply. We
use the following values in simulation studies throughout this
paper: and (Several simulation with
different values showed that the method is not so sensitive to
the values.)

We conducted several simulation studies. The first example
uses the description matrix in Fig. 9. Fig. 12 shows a simulated
configuration sequence. In this figure, the numbers indicate
the stages of the units. All the units are connected physically;
the lines indicate logical connections. All self-assembly sim-
ulations succeeded in 1000 trials. The total simulation steps
ranged from 134 to 2323 with an average of 590.

Another example is a larger configuration composed of 75
units, shown in Fig. 13. The numbers in the figure indicate
the location indices. Self-assembly succeeded in 979 cases out
of 1000 in this configuration. The required steps ranged from

4In this paper we will assume that the distance is measured based on the
minimum number of existing (or connecting) units between two units. The
distance of the adjoining units is 1.
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Fig. 12. Simulated sequence of self-assembly.

Fig. 13. Configuration of wrench-like shape.

1702 to 4775 and the average was 2600. A simulated sequence
is shown in Fig. 14. The reason for these failures is that the
units made a hole inside of their configuration, and it is difficult
to fill such a hole when it is generated in the early stage of
the development.

VI. SELF-REPAIR

In this section, we describe self-repair of the system follow-
ing a breakdown. Self repair can be performed with a simple
procedure due to the layered structure of the system.

There are many types of failures to be considered. In this
paper, we deal with one category of failure wherein some units
are removed from the system. We assume that the remaining
units work correctly. The removal may include several units
and may occur at any place in the system at any time. Thus,

Fig. 14. Simulated sequence of self-assembly.

not only the units on the outer surface but also the ones inside
of the logical network may be removed, if the remaining units
are connected.
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Fig. 15. Actions of degeneration.

The strategy is to transport spare units to the area of
the damage and refill it. If necessary, some units become
undifferentiated again during this process. This self-repair can
be performed by degeneration of the system to the previous
stage, which is the same location index as the removed units.
The system stops the ongoing development, returns to an
earlier stage where negative effects of the removal do not
yet exist, and resumes construction. The procedure consists of
failure detection, transmission of a signal, and degeneration.

A. Self-Repair Method

1) Failure Detection: Failures can be detected by the units
involved in the connection network as follows: if unit A has
a logical connection with unit B, and unit B does not respond
to a signal from A (e.g., querying its logical connection, etc.),
then unit A deems that unit B has been removed.

2) Degeneration Signal:Degeneration of the stage is per-
formed according to a signal called a degeneration signal. It
is transmitted by the units that have detected failure, and the
signal is propagated to the overall system. The signal includes
the level of the failure, which determines the stage to which
every unit should return. The level is the location index of the
removed units. To make provisions against failure, each unit
must store the location indices of the adjoining units.

3) Degeneration: If some units are removed, and their
minimum location index is then the system must return
to stage To accomplish this, every unit with a stage greater
than (areas A and B of the description matrix in Fig. 15)
must return to stage Units in area A, which are involved in
the network after stage, become undifferentiated again. Each
unit in area B must set the previous logical type and direction
at stage again. For that purpose, each unit also needs to store
the history of the directions of the logical type at each stage.
Units in area C do not do anything. They are designed to stop
the signal and to ignore unnecessary degeneration signals. The
precise procedure is formulated as follows.

Let be the location index of a unit, the stage of the unit,
and the smallest level of degeneration signal received from
the neighbors. If then the unit transmits a degeneration
signal of level to all neighboring units. Then, according to
the level of it performs the following.

1) If (area A), the unit is initialized and it returns to
the undifferentiated state.

2) If (area B), the stage of the unit is set to
. The units adjust their variables (logical type, etc.)

according to the stage.

3) If (area C), the unit does not take any action, i.e.,
it ignores the signal.

Through this procedure, the signal is spread to the overall
system and the system degenerates to the appropriate stage.
If several units are removed, the minimum location index is
consequently effective. Also, the signal does not remain after
the completion of degeneration.

The construction and degeneration may be performed con-
currently; i.e., after the transmission of a degeneration signal,
the units resume construction immediately. If several failures
occur in the system, signals of several levels are spread, and
the system goes back to the lowest level. It must be noted that
if the kernel is removed, the units must begin again with the
kernel selection process.

B. Simulation

We conducted simulation studies for self-repair. The proce-
dure of self-repair is embedded between procedures 3) and 4)
in Section IV-B1.

A simulated sequence of self-repair for the configuration of
Fig. 13 is shown in Fig. 16. The numbers indicate the stages of
the units. There are ten spare units in the initial configuration.
Three units are removed from the upper right position (b)
after the target configuration is finished. Six units are removed
from the upper left position while the degeneration signal is
propagated (d). The overall system degenerates to stage 19
(g), resumes construction, and successfully forms the target
configuration again (h).

VII. D ISCUSSION

In this section we discuss some limitations and extensions
of the method.

The nucleation method constructs several shapes accord-
ing to the description matrix, and any connected shape has
corresponding description matrices. Therefore, in principle,
we can construct any connected shape using the nucleation
method, if we have sufficient number of units. The easiness
of construction differs widely depending on the target shapes,
but it is difficult to describe it quantitatively. Construction is
easy if the shape is symmetric, has few protruding parts, has
no hole inside, and not be made of many units.

It would be useful to introduce several extensions to the de-
scription matrix, like programming languages. One extension
is to use several description matrices. The overall system is
described by a collection of several components. This exten-
sion is possible by introducing a new entry which indicates a
link to another description matrix. It is effective in concise
description, especially for iterative structures. Fig. 17(a) is
an example of a configuration with a iterative structure, and
Fig. 17(b) shows its two description matrices.

As a failure of the system, we considered only the simplest
case that several units are removed from the system and
remained units work correctly. Many other cases of failures
can be considered. Another simple failure is halting failure,
in which failed units do nothing. Our method can be applied
to this case after cutting off the failure units from the system.



TOMITA et al.: SELF-ASSEMBLY AND SELF-REPAIR METHOD 1043

Fig. 16. Simulated sequence of self-repair.

(a)

(b)

Fig. 17. Construction with two description matrices. An example of (a)
iterative structure and (b) description matrices.

Recover from other failures (e.g., Byzantine failure) will be
much more complicated.

In order to show the feasibility of the homogeneous dis-
tributed mechanical systems in the physical world, we have a
lot of future work, mentioned a few in the following.

1) A method of efficient power supply to the units will be
necessary.

2) Miniaturization for micro-scale assembly should be con-
sidered.

3) For a practical application, 3-D systems will be neces-
sary.

As an example, we have proposed a 3-D model in [19]. By
solving these issues, the feasibility of the systems will be
enhanced.

VIII. C ONCLUSION

We have proposed a design of a system composed of
identical units, and a decentralized method of self-assembly
and self-repair. The method, called the nucleation method, is
analogous to the development process of living things. It is
composed of the kernel selection and developmental growth
of a logical network based on a description matrix. Due to the
nature of mechanical units (i.e., they cannot self-reproduce), a
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circulation method for supplying units was introduced. The
system is organized into a layered structure, which makes
the self-repair process simple, using a degeneration signal.
Simulation studies demonstrated the feasibility of the self-
assembly and self-repair methods.

Self-repair is indispensable in many areas that human op-
erators cannot access, e.g., space and deep sea. This study
might lead to a novel methodology for designing systems that
operate continuously without outside help.

APPENDIX A
KERNEL SELECTION

One possible kernel selection procedure is as follows:
Kernel selection:Assume that every unit is in the same

state (values of the variables) at the beginning.5 Each unit
generates a random number and assigns it to its two variables

and It then repeats the following times: it compares
the value of with that of the adjacent units; if another unit
has a larger value, then it assigns the value to the variable
After the repetition, if holds, then there is no unit with
a larger value in the vicinity within the distance Thus, by
taking to be large enough to cover the whole system, one
unit with the largest value can be chosen as the kernel.6

APPENDIX B
UNIT CCIRCULATION

For efficient assembly, the unit circulation procedure de-
scribed in Section V-B6 needs some modifications as follows.

1) This method often makes projections (or protruding
parts) with undifferentiated units; the supply of units
then becomes ineffective. Some additional rules are
necessary to keep the periphery smooth. For example,
if the move of an undifferentiated unit makes another
unit unmovable, then the move is suppressed.

2) First we chose types ‘‘e,’’ ‘‘o,’’ and ‘‘ ’’ as movable
types, but then no unit could move in some config-
urations that were not the target. The easiest way to
avoid such a deadlock is to define most of the types as
movable. But this is not acceptable because of physical
requirements (the whole system must be connected)
and ineffective convergence. We therefore defined types
‘‘m,’’ ‘‘ ’’ and ‘‘K’’ as also movable, but the probabil-
ities of their moving are quite low compared to
for “e,” “o,” and “ ”
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