
Real-Time Smooth Task Transitions for Hierarchical Inverse Kinematics

Gerardo Jarquı́n, Adrien Escande, Gustavo Arechavaleta, Thomas Moulard,
Eiichi Yoshida and Vicente Parra-Vega

Abstract— Hierarchical inverse kinematics (HIK) is widely
used for generating feasible velocity trajectories that serve as
input references for highly redundant robots such as humanoid
robots. To generate the velocity trajectories a set of prioritized
tasks should be provided. For some applications, it is not
necessary to change the priority order of the tasks in the
stack of tasks (SoT) along the motion execution. However,
complex tasks need a dynamic behavior of the SoT such that the
insertion, removal or swap can be performed at running time.
These task transitions may induce discontinuities in the joint
velocities if they are not carefully handled. In this context, we
propose an efficient strategy to manage task transitions through
a simple procedure which smoothly interchange the priority
of a couple of consecutive prioritized tasks. Furthermore, our
method does not increase the computational cost of the HIK
since neither any additional task should be added, nor parallel
control laws should be computed. As a result our strategy may
be used in real time to produce the velocity commands of real
humanoid robots. The effectiveness of our strategy is verified
at simulation level with the HRP-2 humanoid robot performing
complex time-driven tasks.

I. INTRODUCTION

For the last two decades, humanoid robots have gained
special attention in the robotics community due to the
challenges that their highly redundant mechanical structure
represent. Moreover, its motion capabilities make them suit-
able to perform tasks in human environments [1], [2].

In the context of whole-body motion generation, the task
priority approach [3] is an effective tool to exploit the
redundant structure of humanoid robots [4]. Dynamic and
kinematic controllers have been proposed to simultaneously
handle a set of prioritized constraints [5], [6], [7], also called
tasks. Then, the set of tasks is ordered in a structure called
stack of tasks (SoT) [8].

Commonly, the SoT has a static behavior, i.e. the tasks
and their priorities do not change along the motion exe-
cution. The tasks are defined once at the beginning and
remain unchanged until the motion terminates. For solving
more complex motion problems, a dynamic SoT is required
such that any task is subject to be added, removed or its
current priority can be changed. These actions are called
task transitions and it is well known that they may induce
discontinuities in the joint velocities [9]. Recently, the work
in [10] proposed a strategy called intermediate desired value

G. Jarquı́n, G. Arechavaleta and V. Parra-Vega are with the Robotics
and Advanced Manufacturing Group, Centro de investigacin y de Estu-
dios Avanzados del IPN, Saltillo, Coah. México {gerardojarquin,
garechav, vicente.parra}@cinvestav.edu.mx.

A. Escande, T. Moulard and E. Yoshida are with the CNRS-AIST
JRL (Joint Robotics Laboratory), UMI3218/CRT {adrien.escande,
thomas.moulard, e.yoshida}@aist.go.jp

approach (IDVA). The underlying idea relies on the modi-
fication of the desired end-effector velocities of the task in
transition by adding a term which represents the velocity
of the end-effector produced by the other tasks in the SoT.
This new term is called intermediate desired value. Then the
smooth transition between this term and the original desired
velocity allows the insertion, removal or swap of tasks.
Despite the effectiveness of this method, the computational
cost increases exponentially with respect to the number of
tasks in transition since the HIK is computed for each
intermediate desired value. This represents a drawback for
real-time implementation purposes. Another solution to avoid
discontinuities due to task transitions is provided in [9]. The
solution consists in applying a linear interpolation between
two control laws. This strategy is less costly than the IDVA
since it is only necessary to partially interpolate the two
control laws. In one way or another, the computational cost
increases because its implementation requires to modify the
HIK solver in order to doubly compute the tasks in transition.

A. Problem statement and contribution

The present work aims at generating smooth trajectories
for humanoid robots under task transitions. The inputs are the
set of prioritized tasks, the desired SoT after each transition
and the time when transitions should occur. As a result,
the method should be capable to produce feasible velocity
trajectories to comply with input requirements.

The contribution of the paper is then to provide an efficient
method for swapping the priorities of two consecutive tasks.
It takes advantage of a weighting method to merge in the
same priority two tasks coming from two consecutive priority
levels. In order to comply with the original priorities, proper
weights are assigned to each task. Such weights are smoothly
changed to modify the tasks priorities such that the original
priorities are inverted. It is worth mentioning that our method
does not modify the inner computation of HIK solvers since
it only acts at the definition of the tasks. Consequently, any
available HIK solver in the literature can use the proposed
method.

The remaining of the paper is structured as follows. Sec-
tion II briefly recalls the task priority formalism. In section
III is discussed the problem of task transitions and the most
recent schemes in the literature offering a solution. Then,
the main result is presented in Section IV. The simulation
results that validate our method are described in Section V.
Finally, we provide some final remarks in Section VI.

2013 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids).
October 15 - 17, 2013. Atlanta, GA

978-1-4799-2618-3/13/$31.00 ©2013 IEEE 528

II. TASK PRIORITY FORMALISM

The priority of each task in the SoT ensures that tasks with
lower priority do not perturb the higher priority ones. This
behavior is achieved by solving each task within the null
space of all tasks with higher priority. In the remaining of
this section we recall the kinematic version of this formalism.

Let us consider an equality task that may be characterized
by a differential function of the form

ẋ1 − ẋd1 = 0 (1)

where ẋd1 , ẋ1 ∈ IRm are the desired and current velocity
vectors of the end-effector 1, respectively. The first term on
the left is a function of the desired and actual end-effector
pose vectors ẋ1 = f(x1,xd1

). It can be represented as a
time varying function in order to drive the pose error e1 =
x1 − xd1 to zero (see [11], [8], [12] and [5]). The second
term on the left is obtained from the robot state through the
differential kinematic equation

ẋ1 = J1(q)q̇ (2)

where J1(q) ∈ IRm×n is the Jacobian matrix, q, q̇ ∈ IRn are
the vectors of joint positions and joint velocities, respectively.
Note that for the case of redundant robots n > m.

By substituting (2) in (1) the task function is obtained

J1(q)q̇ − ẋd1
= 0 (3)

which solution for q̇, in the least squares sense, is [3]

q̇ = J1(q)+ẋd1 +Q1q̇2 (4)

where the operator (·)+ denotes the Moore-Penrose pseu-
doinverse. The second term represents the residual space
remaining after the solution of the task 1. Thus, Q1 is a
projector onto the null space of J1(q)

Q1 = In − J1(q)+J1(q) (5)

with In ∈ IRn×n as the identity matrix. Note that q̇2 may
be the solution of another task function J2(q)q̇ − ẋd2

= 0.
The solution for both tasks is

q̇2 = J1(q)+ẋd1 + (J2(q)Q1)
+ (

ẋd2 − J2(q)J1(q)+ẋd1

)
(6)

where (J2(q)Q1)
+ is the projector to the range space of the

projection of J2(q) in the null space of J1(q). Since the
second task is solved in the null space of the first task, then
this implies that task 1 has higher priority than task 2. This
process can be recursively applied to solve as many tasks
as available degrees of freedom (DoF) has the robot. The
recursive formulation for k = 2 to p tasks becomes [13]:

q̇k = q̇k−1 + (Jk(q)Qk−1)
+ (

ẋdk
− Jk(q)q̇k−1

)
(7)

with q̇1 = J1(q)+ẋd1 and Q1 given by Eq. (5), respectively.
The projector Qk can be efficiently computed in linear time
as in [14]:

Qk = Qk−1 − (Jk(q)Qk−1)
+
Jk(q)Qk−1

Note that the recursive solution (7) can be also obtained
from the following constrained quadratic program [15]:

min
q̇k,wk

1

2
||wk| |2 (8)

s.t. Jk(q)q̇k − ẋdk
= wk

J̄k−1(q)q̇k − ¯̇xdk−1
= w̄∗k−1

where wk ∈ IRm is a vector of slack variables used to relax
the infeasible constraints in the priority level k, w∗k repre-
sents the optimum value of wk. The bar above some vari-
ables means a stack, such that Āk =

[
AT

1 AT
2 . . . AT

k

]T
.

III. THE TASK TRANSITION PROBLEM

A task transition occurs when the order of the tasks in the
SoT changes. This change may be produced by the insertion
or removal of at least one task, but also it may be produced
because at least two tasks interchange their respective priority
levels. The simplest case implies the interchange of a pair of
consecutive tasks according to the hierarchy. The problem
with changing the order of the tasks in the SoT lies on
the fact that two different order of tasks produce different
joint velocities in the general case. Then, when a SoT is
abruptly changed by another, a discontinuity is produced.
In the remaining of this section, two representative schemes
capable to avoid such discontinuities are discussed.

A. Linear interpolation

A direct solution to the task transition problem is to pass
smoothly from the solution of a SoT with a certain order
of tasks to another SoT by performing a linear interpolation
between both solutions [9]. The strategy applies a number
of swapping operations with consecutive tasks. For instance,
the insertion of a task means that it is activated in the null
space of all the active tasks, then through several swaps it is
brought to the desired priority level. The reverse process is
performed to remove the task.

Let us consider two SoT, SoTAB and SoTBA. Both are
composed by the same tasks with consecutive priority levels,
i.e. A and B. In the SoTAB , the task A has higher priority
than task B while SoTBA represents the opposite hierarchy.
Let i be the task with the next higher priority level than
tasks A and B, similarly, let j be the task with the next
lower priority level. Since the order of tasks with higher
priority level than tasks A and B is the same in both SoT,
the solution for the upper levels is the same. Such a solution
is computed from (7) with k = 2, . . . , i. However, for levels
A and B the solution is different according to the priority
order. For the SoTAB

q̇A = q̇i + (JA(q)Qi)
+

(ẋdA
− JA(q)q̇i)

q̇AB = q̇A + (JB(q)QA)
+

(ẋdB
− JB(q)q̇A) (9)

where QA = Qi−(JA(q)Qi)
+
JA(q)Qi. On the other hand,

for the case of SoTBA we have:

q̇B = q̇i + (JB(q)Qi)
+

(ẋdB
− JB(q)q̇i)

q̇BA = q̇B + (JA(q)QB)
+

(ẋdA
− JA(q)q̇B) (10)

529

with QB = Qi − (JB(q)Qi)
+
JB(q)Qi. Then, the priority

level j is given by

q̇j = q̇i + ˆ̇q +
(
Jj(q)Q̂

)+ (
ẋdj
− Jj(q)ˆ̇q

)
where

ˆ̇q =

{
q̇AB for SoTAB

q̇BA for SoTBA
(11)

From the fact that the projector Qk represents the null space
of all the k tasks, it is easy to deduce that

Q̂ = QA − (JB(q)QA)
+
JB(q)QA

= QB − (JA(q)QB)
+
JA(q)QB

then the computation of the last priority levels is not affected
by the order of A and B. These levels are computed from
(7) with k = j + 1, . . . , p.

Consequently, to change the priority order of tasks A
and B it is only necessary to perform a linear interpolation
between q̇AB and q̇BA

ˆ̇q = ξq̇AB + (1− ξ)q̇BA (12)

where ξ is a time varying function that smoothly evolves
from 0 to 1.

Despite this solution is simple and easy to implement, it
has two main inconvenients. First, the computational cost
increases since the partial solutions (9) and (10) should be
computed at the same time during the transition period. This
characteristic adds the computation of two pseudoinversions
for each swap operation. Then it is necessary to compute
p+2ns pseudoinversions for ns number of swaps performed
at the same time. Note that ns implies 2 tasks in transition.
It is clear that for ns < p/2, the number of pseudoinversions
are equivalent to call the HIK solver less than 2 but more than
1 times. The worst case is when all tasks are in transition, i.e.
ns = p/2. In this case the computational cost is equivalent
to call twice the HIK solver. Second, it needs to modify
the HIK solver in order to allow the double computation of
the levels in transition. This may be an obstacle to exploit
the nice characteristics of recent HIK solvers such as [15],
which compute the control law in one operation after a
matrix decomposition process based on QR factorizations.
As a consequence, in order to not modify the HIK solver, it
would be necessary to interpolate two complete control laws.

B. Intermediate desired value approach

An alternative and effective solution to smoothly manage
task transitions is proposed in [10], called intermediate de-
sired value approach (IDVA). With this scheme it is possible
to insert or remove a task in one step. The main idea relies on
the modification of the desired end-effector velocity in order
to change smoothly from the velocity of the end-effector
produced by the other active tasks to the desired velocity.

Let i be a task that should be removed or inserted, within
the transition period the desired end-effector velocity changes
as follows

ˆ̇x = ξẋdi
+ (1− ξ)Jiq̇p/i (13)

where ˆ̇x is the intermediate desired value for task i, q̇p/i is
the solution of the p tasks in the SoT without considering
the task i. In (13), it is clear that if ξ = 0 the desired end-
effector velocity is actually the current velocity produced by
the action of the other active tasks. Thus, by changing ξ the
behavior of the end effector changes from the action of the
other tasks to the desired velocity.

This strategy effectively allows the smooth insertion, re-
moval and swap of any number of tasks without modifying
the HIK solver since it acts only on the desired end-effector
velocity. However it has the inconvenient that, in the general
case, the HIK solver function should be called 2ntr − 1
times for ntr tasks in transition, i.e. the computational
cost increases exponentially accordingly with the number of
tasks in transition. This behavior is a consequence of the
computation of q̇p/i, which depends on the computation of
the other intermediate desired values.

IV. SMOOTH PRIORITY SWAP STRATEGY

In this section we present a new strategy that is suitable
to be applied in real time since it does not increase the
computational cost of the HIK solver. Moreover, this strategy
is independent to the HIK solver since it acts at the definition
of each task in the SoT. The strategy is based on the results
presented in [16] which allow us to define a transition phase
where the two tasks involved in the swap are merged. Then
the weights of each task are smoothly changed in order to
invert the original priorities.

A. Priority swap of two consecutive tasks

The objective is to design a transition phase in the period
t0tr ≤ t ≤ tftr (see Fig. 1) which helps to change smoothly
from the solution given by the minimization problem (14) to
the one given by (15)

min
q̇k,wk

1

2
||wk| |2 (14)

s.t. BJk(q)q̇k − Bẋdk
= Bwk

AJk−1(q)q̇k − Aẋdk−1
= Aw∗k−1

J̄k−2(q)q̇k − ¯̇xdk−2
= w̄∗k−2

where the upper-scripts A and B are used to identify the
tasks before and after the swap operation such that before
the swap, task A has higher priority than task B.

min
q̇k,wk

1

2
||wk| |2 (15)

s.t. AJk(q)q̇k − Aẋdk
= Awk

BJk−1(q)q̇k − Bẋdk−1
= Bw∗k−1

J̄k−2(q)q̇k − ¯̇xdk−2
= w̄∗k−2

According to [16], it is possible to change the constrained
minimization problem

min
X

1

2
‖Gx− g‖2 (16)

s.t. Hx− h = 0

530

Fig. 1. Profiles of the weights during the transition phase. The decreasing
weight βA leads the task with initial higher priority level to lose its priority
when βA = 1. Then, the weight βB smoothly provides with higher priority
to task B.

for an unconstrained one of the form

min
q̇

1

2

∥∥∥∥[GβH
]

x−
[
g
βh

]∥∥∥∥2 (17)

where β establishes the weight of the task Hx− h over the
task Gx− h. Consequently, with an adequate value for β it
is possible to set a priority for the tasks in a similar way
than (16). Based on this result, we propose to design the
transition phase by merging both priority levels in transition,
in order to solve the constrained quadratic program

min
q̇k,

Awk,Bwk−1

1

2

∥∥∥∥[βA(t)(Awk)
βB(t)(Bwk−1)

]∥∥∥∥2 (18)

s.t. AJk(q)q̇k − Aẋdk
= Awk

BJk−1(q)q̇k − Bẋdk−1
= Bwk−1

J̄k−2(q)q̇k − ¯̇xdk−2
= w̄∗k−2

The idea is to switch from (14) to (18) at t = t0tr with
βB(t0tr) = 1. The value of βA(t0tr) should be selected to
preserve the priority of task A over the task B such that the
solutions of (14) and (18) are equivalent. As a consequence,
the continuity is ensured at the switching instant. Then,
βA(t) should decrease its value until reach 1, at that moment
both tasks have the same value and, consequently, the same
priority. Then βB(t) begins its variation toward its final
value which will be reached at t = tftr, at this time the
minimization problem is switched to (15) and the swap
process is concluded. The continuity of the solution at t = tftr
depends on the value of βB(tftr) which should be selected
in order to comply with the priority order of (15). Note that
βA(t0tr), βB(tftr) ≥ 1 and since there is only two tasks in the
same priority level these values are not difficult to choose
but they should be properly tunned.

It is important to mention that in [9] it is also discussed
a strategy to swap the priorities of two consecutive tasks by
changing the weights of two tasks temporally placed at the
same level of hierarchy. Such a strategy was discarded due
to the impossibility of using the classic damping method to
avoid the algorithmic singularities. In order to establish the
difference between our strategy and that proposed in [9],

Section IV.A, let us recall with our notation the formulation
for two tasks used in [9]

min
q̇

1

2

∥∥∥∥[(1− α(t))(AJ(q)q̇ − Aẋd)
α(t)(BJ(q)q̇ − Bẋd)

]∥∥∥∥2 + δ‖q̇‖2 (19)

where lim
t→t0tr

α(t) = 0 and lim
t→tftr

α(t) = 1. The variation

of the weights of tasks A and B as a consequence of the
evolution of α(t) produce a discontinuity when the weight
of task A becomes lower than δ because task A is suddenly
shadowed, i.e. the task A is abruptly deactivated because the
space used for its regulation becomes empty. A similar case
occurs when the weight of task B becomes higher than δ. In
contrast with this strategy, in our method the weights of tasks
A and B never are lower than 1, this means that the damping
is always the task with the third priority level. Consequently,
it is possible to use the classic damping method to prevent
high joint velocities produced by algorithmic singularities.

B. Insertion and removal of tasks

The strategy to insert and remove a task is based on
sequential swaps. In order to insert a task, first it should
be inserted in the last priority level by merging the new task
with the task with lowest priority, the problem to solve in
the transition phase is

min
q̇k,

Awp,Bwp+1

1

2

∥∥∥∥[Awp

βins(t)(
Bwp+1)

]∥∥∥∥2 (20)

s.t. AJp+1(q)q̇p+1 − Aẋdp+1 = Awp+1

BJp(q)q̇p+1 − Bẋdp
= Bwp

J̄p−1(q)q̇p+1 − ¯̇xdp−1
= w̄∗p−1

however in this case βins(t
0
tr) = 0 and it increases to its

final value at t = tftr, this variation is different due to the
fact that the task p+ 1 was not in the SoT. In order to bring
the task to the desired priority level, a set of swaps by means
the transition phase (18) must be performed. It is important
to note that after one transition phase it is possible to switch
to another transition phase in the next priority level, thus,
only when the task is in the desired priority level it will be
necessary to switch to (14) such that the time spent to bring
the task to its final priority level is as low as possible. It
is worth noticing that since βins(t0tr) = 0 a discontinuity is
produced when a damping factor is used as explained above.
However, this problem can be solved by smoothly decreasing
the value of δ until zero before the transition phase (20).

To implement our method it is only necessary to define
the proper values of βA(t0tr) and βB(tftr) in order to comply
with the equivalence of the solution given by (18) and
the solutions provided by (14) and (15). It is important to
mention that the insertion needs to spend some time to bring
the task from the last priority to the desired one since it
is necessary to perform several swaps. The same applies to
remove a task. This may produce a relative slow response of
the robot in applications where the robot should react quickly
by removing or adding a task. It is evident that by reducing
the transition period the time spent to place a task in its

531

Fig. 2. Simulation scenario. The HRP-2 robot must grasp two mobile
wooden objects in order to put them in their respective boxes. As the
conveyor brings the objects to the robot, it must grasp them before they
reach the edge of the conveyor..

desired priority level also decreases, however this action may
produce fast joint velocity variations, although continuous.

V. SIMULATION RESULTS

In order to validate our strategy we design the simulation
scenario shown in Fig 2. The scenario consists mainly of
two conveyors transporting cylindrical wooden objects, a
humanoid robot HRP-2 and a couple of boxes containing
some wooden objects. The objective is that the HRP-2 grasps
the objects approaching on the conveyors before they reach
the edge, otherwise, they will fall. After taking the objects,
the robot has to put them into the boxes on the table.
Since we are considering tasks driven by time, we used
the time base generator gain presented in [5] to manage the
completion time of the reaching tasks.

The simulation begins with the objects on the conveyors
approaching the HRP-2, the object on the right hand is the
nearest from the robot and the first one to be reached. In
table I it is shown the order of the tasks in the SoT at
some critical time instants. Note that at the beginning of
the simulation, the task of the right hand (RHT) is already
active while the task of the left hand (LHT) is not. After
taking the object on the right, the robot has to put it in the
right box, however the object on the left is near the conveyor
edge, as a consequence, the LHT needs to be activated but
also it needs to have a higher priority than the RHT. Because
it is not possible that the robot can reach the target in the
right box and the object in the left conveyor at the same
time, the higher priority of the LHT will allow the robot
to reach the object in the conveyor even when the target in
the box cannot be completed. However, in order to provide
with more DoF to the LHT, the RHT could be removed.
As a consequence the robot reaches the left object with a
better posture. Once both objects have been reached, the
robot has to put them into the boxes. Since a new object in
the right conveyor is approaching the robot, it should have

available the right hand to take the new object, then the RHT
is activated and provided with higher priority than the LHT.
In order to generate a better posture for the robot, it is a
better choice to remove the LHT while the robot reach the
right target in the box. After the robot places the object in the
desired position, the RHT is removed and LHT is activated to
place the left object inside the left box. Both robot hands are
now free and a new cycle may begin. A series of snapshots
of the motion execution is shown in the first row of Fig. 3
where it can be observed that the DoF released when a task
is removed are occupied to maintain the robot balance.

The simulation results for the joint velocities are shown
in the second row of Fig (3). Note that the velocity profiles
are smooth along the simulation even when the tasks are
removed or inserted.

VI. CONCLUSION AND FUTURE WORK

We presented an effective method to smoothly manage
task transitions of a set of prioritized tasks based on a
weighting strategy. Our method is appropriate for being used
in real time since it does not require to modify the HIK
solver. Consequently, the computational cost depends only
on the selection of the HIK solver used to generate the
velocity commands. The strategy is based on a mechanism
to smoothly swap the priority of two consecutive tasks. The
insertion of a task is achieved by performing a sequence of
swaps to bring the new task from the last priority level to the
desired one. In order to remove a task the inverse process
is followed. This process requires to spend some time to
insert or remove a task, which may be an inconvenient in
the strategy when the application requires that the insertion
or remotion should be carried out quickly. We are working
on extending our strategy to use it together with HIK solvers
capable to handle inequality constraints in real time as
the presented in [15]. The natural next step is to consider
dynamic constraints by integrating our method in prioritized
inverse dynamics schemes.

REFERENCES

[1] H. Harada, S. Kajita, H. Saito, M. Morisawa, F. Kanehiro, K. Fu-
jiwara, K. Kaneko, and H. Hirukawa, “A humanoid robot carrying
a heavy object,” in IEEE International Conference on Robotics and
Automation, Barcelona spain, April 2005, pp. 1712–1717.

[2] L. Sentis and O. Khatib, “A whole-body control framework for
humanoids operating in human enviroments,” in IEEE International
Conference on Robotics and Automation, Orlando, FL, USA, May
2006, pp. 2641–2648.

[3] A. Liégeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 7, no. 12, pp. 868–871, December 1977.

[4] M. Gienger, H. Janssen, and C. Goerick, “Task-oriented whole body
motion for humanoid robots,” in IEEE/RAS International Conference
on Humanoids Robots, Tsukuba, Japan, December 2005, pp. 238–244.

[5] G. Jarquı́n, G. Arechavaleta, and V. Parra-Vega, “Continuous kine-
matic control with terminal attractors for handling task transitions of
redundant robots,” in IEEE International Conference on Robotics and
Automation, Karlsruhe, Germany, May 2013.

[6] O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dynamic
behavior and control of human-like robots,” International Journal of
Humanoid Robotics, vol. 1, no. 1, pp. 29–43, March 2004.

[7] L. Sentis, J. Park, and O. Khatib, “Compliant control of multicontact
and center-of-mass behaviors in humanoid robots,” IEEE Transactions
on Robotics, vol. 26, no. 3, pp. 483–501, June 2010.

532

TABLE I
COMPOSITION OF THE STACK OF TASKS AT SOME CRITIC TRANSITION TIMES

P 0 seconds 1.5 seconds 3 seconds 3.8 seconds 4.6 seconds 6 seconds 7 seconds
1 Feet poses
2 Center of mass position
3 Right hand pose Right hand pose Left hand pose Left hand pose Right hand pose Right hand pose Left hand pose
4 Waist orientation Waist orientation Waist orientation Waist orientation Waist orientation Waist orientation Waist orientation
5 Sight orientation Sight orientation Sight orientation Sight orientation Sight orientation Sight orientation Sight orientation
6 Chest pitch Chest pitch Chest pitch Chest pitch Chest pitch Chest pitch Chest pitch
7 Avoid obstacles Left hand pose Avoid obstacles Right hand pose Avoid obstacles Left hand pose Avoid obstacles
8 Avoid obstacles Avoid obstacles Avoid obstacles

Idle Left hand pose Right hand pose Left hand pose Right hand pose

(a)t = 2s (b)t = 3.5s (c)t = 6s (d)t = 8s

Fig. 3. Top row. A sequence of snapshots showing the postures of the robot when it reaches each target. Second row. The joint velocities profiles along
the simulation. Note that they are smooth all the time. Last row. Order of the tasks according with their corresponding priority levels in the SoT during
the simulation period..

[8] N. Mansard and F. Chaumette, “Task sequencing for high-level sensor-
based control,” IEEE Transactions on Robotics, vol. 23, no. 1, pp.
60–72, February 2007.

[9] F. Keith, P.-B. Wieber, N. Mansard, and A. Kheddar, “Analysis of
the discontinuities in prioritized task-space control under discreet
task scheduling operations,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Francisco, CA, USA, September
2011, pp. 3887–3892.

[10] J. Lee, N. Mansard, and J. Park, “Intermediate desired value approach
for task transition of robots in kinematic control,” IEEE Transactions
on Robotics, vol. 28, no. 6, pp. 1260–1277, December 2012.

[11] P. Soueres, V. Cadenat, and M. Djeddou, “Dynamical sequence of
multi-sensor based tasks for mobile robots navigation,” in 7th IFAC
Symposium on Robot Control, Wroclaw, Poland, September 2003, pp.
423–428.

[12] F. Keith, N. Mansard, S. Miossec, and A. Kheddar, “Optimization
of tasks warping and scheduling for smooth sequencing of robotic
actions,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, St. Louis, MO, USA, October 2009, pp. 1609–1614.
[13] B. Siciliano and J.-J. Slotine, “A general framework for managing

multiple tasks in highly redundant robotic systems,” in IEEE Inter-
national Conference on Advanced Robot, Pisa, Italy, June 1991, pp.
1211–1216.

[14] P. Baerlocher and R. Boulic, “An inverse kinematic architecture
enforcing an arbitrary number of strict priority levels,” The Visual
Computer: International Journal of Computer Graphics, vol. 20, no. 6,
pp. 402–417, August 2004.

[15] A. Escande, N. Mansard, and P.-B. Wieber, “Fast resolution of
hierarchized inverse kinematics with inequality constraints,” in IEEE
International Conference on Robotics and Automation, Anchorage,
AK, USA, May 2010, pp. 3733–3738.

[16] C. V. Loan, “On the method of weighting for equality-constrained
least-squares problems,” SIAM Journal of Numeric Analysis, vol. 22,
no. 6, pp. 851–864, October 1985.

533

