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Abstract— This paper presents an inverse kinematics (IK)
method which can control future velocities and accelerations
for multi-body systems. The proposed IK method is formulated
as a quadratic programing (QP) that optimizes future joint
trajectories. The features of the proposed IK are: (1) the
evaluation of accelerations at future time instances, (2) the
trajectory representation that can implicitly integrate the time
integral formula into QP, (3) the computation of future Jacobian
matrices based on the comprehensive theory of differential
kinematics proposed in our previous work. Those features
enable a stable and fast IK computation while evaluating the
future accelerations. We also conducted thorough numerical
studies to show the efficiency of the proposed method.

I. INTRODUCTION

The inverse kinematics (IK) is one of the most important
mathematical foundations in robotics. The classical IK of
a robot computes the joint angles that realize the desired
position and orientation of the end-effector or a specific
link. Since the symbolic solution is difficult to be obtained
except for some special structures, the numerical approaches
with solving the differential kinematics equation have been
studied [1], [2]. The numerical approaches usually require
the computation of the Jacobian matrix about the kinematic
equation. Its efficient computation has been already estab-
lished [3].

One important issue of the numerical approaches is how to
overcome the numerical instability due to the singularity of
the Jacobian matrix. Several algorithms have been developed
to provide the solution with numerical stability [4], [5], [6].
Another focus of researches is how to simultaneously handle
various types of prioritized constraints including inequality
constraints. Since the closed form solution of the differen-
tial equation under inequality constraints is difficult to be
obtained, some efficient and robust approaches utilize the
technique of nonlinear optimization [7], [8], [9], [10]. Those
IK algorithms are now widely applied to motion generation
for not only industrial manipulators but also various types of
multi-body systems [11], [12], [13], [14].

The main focus of the paper is how to evaluate high-
order differential information such as accelerations or jerks
during the IK computation, while most IK methods compute
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only the time-series of joint angles. The integration of such
evaluation is motivated by several reasons, for instance,
huge accelerations can cause damage or accelerating the
wear of the actuators of a robot, since the accelerations in
the generated trajectory are related to the exerted torques
[10]. Moreover, minimizing the jerk reduces the excitation
of the resonant frequencies of an industrial manipulator
[15], [16], this is especially true for most of collaborative
industrial robots (cobots), which are equipped with compli-
ant actuators, such as Series-Elastic Actuators (SEA). The
minimization of the jerk is also regarded as an important
factor when generating human-like motion by a robot [17],
[18], which is indicated by the minimum jerk theory relating
to human hand trajectory [19].

The paper presents an IK method that can evaluate high-
order differential information by predicting future joint tra-
jectories. The predictive IK is formulated as the quadratic
programing (QP) problem about the future trajectory. The
problem evaluates the accelerations at future time instances,
which implicitly evaluates high-order differential informa-
tion. Though the optimization including accelerations or
jerks has been proposed in the related work [17], it often
faces the problem of inaccurate solutions as well as nu-
merical instability, which will be shown in this paper. The
highlight of the proposed method is that the time integral
formula is implicitly integrated into the QP problem. This
implicit time integration enables the optimization of the
variables at future time instances. Another highlight is that
the method also computes the Jacobian matrices at future
time instances. The future Jacobian matrices are required
when handling the constraints on the future instances of the
desired trajectory. An efficient and simple computation of
those Jacobian matrices is carried out by using the com-
prehensive theory of the differential kinematics [20], [21].
The proposed method has been thoroughly validated and
analyzed in simulation using a planer robot and a humanoid
robot, those simulation results pointed out the efficiency of
the proposed method as well as solving several numerical
instability issues that conventional IK methods suffer from.

II. PREDICTIVE INVERSE KINEMATICS

A. QP formulation for inverse kinematics

The inverse kinematics problem of a robot can be formu-
lated as quadratic programing (QP):
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min
q̇t

1

2
q̇T
t Qq̇t (1)

subject to Jtq̇t = ṙt

q̇− ≤ q̇t ≤ q̇+

where, q̇ ∈ Rn is the joint angle velocity, n is the number
of degrees of freedom (DoF) of the robot, the subscription
t means the value at t-th discretized time instance, Q
is a positive semi-definite matrix, ṙ ∈ R6 is the linear
and angular velocity of the end-effector, J is the Jacobian
matrix of the end-effector, and q̇+ and q̇− are the upper
and lower limit of the joint velocity. For convenience of
explanation, the formulations in the following sections only
show the constraint about the end-effector and the limits of
joint velocities, however, note that other linear equality or
inequality constraints can also be considered.

If there is no inequality constraint, the problem can be
efficiently solved by using the pseudo-inverse of the equality
constraint [1]. On the other hand, the inequality constraints
makes it difficult to get the closed-form expression of the
problem. Therefore, it is usually solved by using a QP solver
[7], [8], [9], [10].

After solving Eq.(1), the joint angle at the next time
instance can be computed by the following time integration:

qt+1 = qt + q̇t∆t (2)

The motivation of the paper is to evaluate not only
velocities but also accelerations of the robot. Note that the
optimization in Eq.(1) and the time integration in Eq.(2)
are separated; the optimization evaluates the velocities at the
current time instance, and the time integration computes the
joint angles at the next time instance. This inconsistency
about the time instances leads the issues when evaluating
the accelerations, which will be shown later in Section IV
showing the numerical experiments.

B. Mathematical notations for future trajectory

This section shows the preliminary mathematical notations
for the trajectory at future time instances that will be used
in the sequel of the paper.

The future trajectory is represented by the discretized
samples of joint angles:

q̃N ≜
[
q0

T q1
T · · · qN

T
]T

(3)

where, qi indicates the joint angle at time instance ti.
The derivatives of q̃N are also defined as follows.˜̇qN =

[
q̇0

T q̇1
T · · · q̇N

T
]T

(4)˜̈qN =
[
q̈0

T q̈1
T · · · q̈N

T
]T

(5)

In order to handle the future trajectory in the QP formu-
lation as shown in the previous section, we introduce the
following concepts: 1) the linear trajectory parameterization
representing time integration, 2) the future Jacobian matrix
for future constraints, and 3) the tracking error from the
future desired trajectory.

1) Linear trajectory parameterization representing time
integration : Let us assume that the joint angle trajectories
and their derivatives can be formulated with the following
linear form: q̃N˜̇qN˜̈qN

 =

Dq

Dq̇

Dq̈

α+

dq

dq̇

dq̈

 (6)

where, α is the trajectory parameter vector. The time inte-
gration such as Eq.(2) can be also formulated as the above
linear form. Some trajectory interpolation techniques such as
B-spline interpolation are also included in the above form.
The detail of the implementation of Dq , Dq̇ , and Dq̈ is
introduced in section II-D.

2) Future Jacobian matrix for future constraints: The
constraints at future time instances require the computation
of the corresponding future Jacobian matrices. In order to
handle the future constraints in the QP framework, let us
approximate the Jacobian matrix Jt at future time instance
tt by the following Taylor expansion:

Jt ≈ Ĵt ≜ J0 + (tt − t0)J̇0 +
1

2
(tt − t0)

2J̈0 (7)

where, Ĵt is the approximated matrix, and J0, J̇0, and J̈0

are available at the current time instance t0. When computing
Eq.(7), the computation of J̇0 and J̈0 is needed. This paper
also introduces a simple and efficient computation of them.
The details will be explained in section III.

3) Tracking error from future desired trajectory: Let us
assume the following dynamics for the tracking error:

ė = −Ke (8)

e ≜
[
Rfα(R̂

TR])
p̂− p

]
where, p and R are the position and orientation of the
end-effector, and p̂ and R̂ are the desired ones, K is a
diagonal and positive semi-definite matrix, and the operator
fα computes the angle axis vector from the rotation matrix.

In this paper, let us assume that the angle axis in the
piecewise trajectory is constant and the error dynamics can
be represented as the following closed form:

êt = eK(tt−t0)et0 (9)

The time derivative can be written by:

˙̂et = KeK(tt−t0)et0 (10)

This dynamics prevents the sudden change of the joint angle
in the optimization.

C. QP formulation for predictive IK

The proposed method solves the following QP problem:

min
α,∀t st

1

2
˜̇qN

TQq
˜̇qN +

1

2
˜̈qN

TQq̇
˜̈qN +

λ

2

∑
t

st
Tst (11)
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subject to ∀t Ĵtq̇t = ˙̂rt + ˙̂et + st

q̇− ≤ q̇t ≤ q̇+q0q̇0
q̈0

 =

qinit
0

q̇init
0

q̈init
0


where, st is the slack variable in order to relax the equality
constraint about the tracking error, ˙̂rt is the desired linear
and angular velocity of the end-effector, and Qq and Qq̇ are
positive semi-definite matrices.

The QP problem in Eq.(11) considers the boundary con-
ditions about the joint angle, velocity, and acceleration at
the current time instance t0 whose values have to be equal
to qinit

0 , q̇init
0 , and q̈init

0 , respectively. Though the boundary
constraints have to be satisfied strictly, the other equality
constraints are relaxed by using the slack variables in order
to make Eq.(11) solvable.

D. Trajectory representation with implicit time integration

The implementation of the trajectory parameterization
shown in Eq.(6) affects the performance as well as the
computational speed of the inverse kinematics problem in
Eq.(11). This section introduces the two methods for trajec-
tory parameterization.

1) Parameterization based on B-splines: Let us define the
following cubic B-spline basis function bi(τ):

bpos(τ) =


1
6{(2− |τ |)3 − 4(1− |τ |)3} (0 ≤ |τ | ≤ 1)

1
6 (2− |τ |)3 (1 ≤ |τ | ≤ 2)

0 (otherwise)
(12)

Let the joint angle at time instance tt be modeled by NB set
of cubic B-spline bases as follows:

qt =

NB∑
i=1

bpos
(
tt
h − i+ 2

)
ci (13)

h ≜ tN − t0
NB − 3

where, ci ∈ Rn is the coefficient vector of i-th basis. Each
basis bi(τ) is aligned at regular intervals, and h is the interval
between two bases. The overview of the alignment is shown
in Fig. 1.

In this case, the parameters α, Dq and dq in Eq.(6) can
be formulated as follows:

α =
[
c1

T c2
T · · · cNB

T
]
T (14)

Dq
(t,i) = bpos

(
tt
h − i+ 2

)
I (15)

dq = 0 (16)

where, I is an identity matrix, and Dq
(t,i) ∈ Rn×n is the

submatrix in the t-th row and j-th column block matrix of
Dq As can be seen from Eq.(12), Dq has a sparse structure.

The first and second derivatives of Eq.(13) can be obtained
by replacing the basis function bpos with the following
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Fig. 1. Relationship between the discretized time instances and the location
of cubic B-spline bases.

functions:

bvel(τ) =


sign(τ)

2 {(2− |τ |)2 − 4(1− |τ |)2} (0 ≤ |τ | ≤ 1)
sign(τ)

2 (2− |τ |)2 (1 ≤ |τ | ≤ 2)
0 (otherwise)

(17)

bacc(τ) =

(2− |τ |)− 4(1− |τ |) (0 ≤ |τ | ≤ 1)
(2− |τ |) (1 ≤ |τ | ≤ 2)

0 (otherwise)
(18)

Therefore, we can have:

Dq̇
(t,i) = bvel

(
tt
h − i+ 2

)
I (19)

Dq̈
(t,i) = bacc

(
tt
h − i+ 2

)
I (20)

dq̇ = dq̈ = 0 (21)

The main feature of this implementation is that the tra-
jectory in the more distance future can be considered by
increasing the number of NB , however, also increasing the
computational cost.

2) Parameterization based on Newmark-β method: The
joint angle and the derivatives at the next time instance t1
can be computed from the information at the current time
instance t0 by the Newmark-β method [22] as follows:q1q̇1

q̈1

 =

β∆t2I
γ∆tI
I

 q̈1 +

dβ

dγ

0

 (22)

where, dβ and dγ are defined as:

dγ = q0 +∆tq̇0 +
1

2
(1− 2β)∆t2q̈0

dβ = q̇0 + (1− γ)∆tq̈0

Unlike the case of using B-splines parameterization, Eq.(22)
is formulated in the closed form with respect to q0, q̇0, and
q̈0. The boundary conditions in Eq.(11) can be eliminated
by substituting q0 = qinit

0 , q̇0 = q̇init
0 and q̈0 = q̈init

0 into
Eq.(22). The optimization problem can be finally simplified
as follows:

min
q̈1,s1

q̈1Qq̈q̈1 +
1

2
(γq̈1 + dγ)

TQq̇(γq̈1 + dγ) +
λ

2
s1

Ts1

(23)
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Fig. 2. Overview of coordinate transformation in the Jacobian matrix
computation.

subject to Ĵ1(γq̈1 + dγ) = ˙̂r1 + ˙̂e1 + s1

q̇− ≤ γq̈1 + dγ ≤ q̇+

The merit of the formulation in Eq.(23) is that the number
of optimized variables is the same as that in the case of
the standard IK with slack variables, which is useful for
applications that require fast computation.

III. COMPUTATION OF JACOBIAN DERIVATIVES

A. Computation of Jacobian matrix

At first, this section introduces the computation of the
Jacobian matrix according to the spatial algebra [23]. Let us
consider the end-effector’s Jacobian matrix of a serial manip-
ulator with rotational joints for convenience of explanation,
though the following formulation can be generalized for any
link’s Jacobian matrix of a multi-body system.

The Jacobian matrix of the global position and orientation
of the end-effector can be represented by:

J =
[
J1 · · · Jn

]
(24)

where, Jj ∈ R6×1 is the block matrix corresponding j-th
joint.

Each block matrix Jj can be computed as follows:

Jj = An†
j Kj (25)

• Aj is the spatial transformation matrix of the coordinate
system of joint j defined as:

Aj ≜
[

Rj O3

[pj×3]Rj Rj

]
(26)

where, pj and Rj are the position and orientation of
the coordinate system of joint j, respectively.

• The skew operator is represented as follows:

[x×3] ≜

 0 −x(3) x(2)

x(3) 0 −x(1)

−x(2) x(1) 0


• The inverse of Aj can be computed by the inverse

spatial transformation:

Aj
−1 =

[
Rj

T O3

−Rj
T [pj×3] Rj

T

]
(27)

• Aj
k means the relative spatial transformation matrix

from coordinate j to k defined as:

Aj
k ≜ Aj

−1Ak (28)

• The coordinate n† means the system whose origin is the
same as the joint coordinate n but whose orientation is
equal to the global frame (i.e. Rn = I), as shown in
Fig. 2.

• Kj represents the constant matrix defined according to
the type of joint j. If joint j is rotational, Kj is given
by:

Kj ≜
[
aj

T 0T
]T

(29)

where, aj ∈ R3 designs the joint axis direction.
After computing the forward kinematics of the robot,

each block matrix Jj in J can be directly computed from
Eq.(25). Though Eq.(25) is formulated by using spatial
formulations in this paper, it is essentially equivalent to the
formulation of the basic Jacobian matrix [3].

B. Computation of the derivatives of Jacobian matrix

The time derivatives of the Jacobian matrix can be simply
computed by using 18 dimensional transformation matrix
that is called the comprehensive motion transformation ma-
trix (CMTM) [20], [21]. CMTM is the extended form of
the spatial transformation matrix A in order to transform
not only position and orientation but also linear and angular
velocities and accelerations. CMTM has many similar math-
ematical features to those of A, and the simple chain product
of CMTMs leads to the forward kinematics computation
including velocities and accelerations. The relationship be-
tween CMTM and forward kinematics including differential
kinematics is detailed in [21].

CMTM of the coordinate system of joint j is defined as
follows:

Xh ≜

 Aj O6 O6

Aj [υj×6] Aj O6

1
2Aj

(
[υ̇j×6] + [υj×6]

2
)

Aj [υj×6] Aj


(30)

where, υj is the spatial velocity of the coordinate of joint j,
and [∗×6] indicates the matrix form of spatial cross product:

[υ×6] ≜
[
[ω×3] O3

[ν×3] [ω×3]

]
where,

υ ≜
[
ωT νT

]T
By using CMTMs, Jj and its derivatives (i.e. J̇j and J̈j)

can be computed in the similar manner to Eq.(25). Let us
consider the following matrix.

J̃j ≜

 Jj O O

J̇j J̇j O
1
2 J̈j J̇j Jj

 (31)
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It can be simply computed by:

J̃j = Xn†
j Gj (32)

where,
• Xj

k means the relative CMTM from coordinate j to k
defined as:

Xj
k ≜ Xj

−1Xk (33)

• The inverse of Xj is computed by the inverse transfor-
mation without computing the inverse matrix directly.

Xj
−1 =[

Aj
−1 O6 O6

− [υj×6]Aj
−1 Aj

−1 O6

− 1
2

(
[υ̇j×6]− [υj×6]

2)Aj
−1 − [υj×6]Aj

−1 Aj
−1

]
(34)

• Gj represents the constant matrix defined according to
the type of joint j such as:

Gj =

Kj O O
O Kj O
O O Kj

 (35)

Each block matrix Jj in J and its derivatives (J̇j and
J̈j) are obtained as the components of J̃j that is simply
computed from Eq.(32). After computing the forward kine-
matics including velocities and accelerations, the derivatives
are directly obtained from the variables of joint j and n.

It should be noted that the Jacobian matrices in the paper
are represented with respect to the global coordinates (i.e.
coordinate n†); on the other hand, the formulations in [21]
are with respect to the local coordinates (i.e. coordinate n).

Though several works introduce the derivatives of the
kinematics computation according to the recursive formula
about the partial derivatives [17], [24], the computation
shown in Eq.(32) can simply and directly compute each
block matrix of J , J̇ and J̈ similarly to the computation
of basic Jacobian.

CMTM is useful as a mathematical tool that simplifies
the differential formulations. On the other hand, the direct
computation of 18 × 18 matrix products should be avoided
in the actual implementation by utilizing the sparse and
symmetric structure of CMTM (similarily to the case when
computing the products of spatial transformation matrices).

The computational complexity of computing J , J̇ and J̈
is O(NJ) respectively, where NJ is the number of joints.
Their computational time is usually small with respect to
the time of solving QP shown in Eq.(11) or Eq.(23).

IV. NUMERICAL EVALUATION

A. IK scenario with planner manipulator

This section presents a specific IK scenario of a planner
manipulator when the standard method (i.e. Eq.(1)) faces
the issues due to the limits of joint velocity. The planner
manipulator has 4 rotational joints and the length of each
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Fig. 3. Planar 4DOF manipulator. The upper figure shows the manipulator
when all the joint angles are set to zero. The lower figure illustrates the
reference trajectories which are defined by the three control points.

segment is 1 m as shown in Fig. 3. The initial joint angles
of the manipulator are:

q0 =
[
20 −10 −70 120

]
(deg)

The position of end-effector at the initial joint angles is
defined as r0. The desired trajectory of the end-effector r(t)
is given as the Bezier curve defined by three control points
r0, r1, and r2:

r(t) =
1

Te
2 ((1− t)2r0 + 2t(1− t)r1 + t2r2) (0 ≤ t ≤ Te)

r1 = r0 +
[
1.5 0.6 0

]T
(m)

r2 = r0 −
[
1 2 0

]T
(m)

where, Te(= 4 s) is the end time of the trajectory. The
trajectory is discretized with time-step ∆T = 0.005 s. The
overview of the desired trajectory is illustrated in Fig. 3.
The upper and lower limits about joint velocities are also
considered:

q̇+ = −q̇− = 0.5
[
1 1 1 1

]T
In this IK scenario, the robot could not follow the desired

trajectory due to its velocity limits, which can be seen from
Fig. 4 where the reference trajectories and the generated ones
are shown. The results of the tracking errors and the joint
velocities with the standard method formulated in Eq.(1) are
given in Fig. 5. Though the standard method could solve
QP at each time instance, the generated trajectories of joint
velocities are vibrating when the desired position cannot be
tracked due to the velocity limits.
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Fig. 4. Reference trajectories and the trajectories generated by standard
IK.

B. Comparative analysis with planner manipulator

This section presents a comparison of IK methods in
order to clarify the features of the proposed method. The
reason of the velocity vibrations shown in Fig. 5 is obvious,
this is because the standard method cannot evaluate the
accelerations. The IK approach with evaluating accelerations
is expected to generate smoother joint velocity trajectories.
On the other hand, the prediction of future trajectories is
important to generate not only smooth but also accurate
results.

In order to clarify this issue, the proposed method was
compared to the IK method shown in [10], which is most
similar to the proposed method. Though the method in [10] is
formulated as jerk optimization, it is actually equivalent to
the optimization about the future acceleration at next time
instance. One main difference from the proposed method
is that the method in [10] uses the Jacobian matrices at
a current time instance for constraints at the next time
instance. Therefore, the method cannot consider the implicit
time integration like the Newmark-β method, which leads
to poor prediction of future accelerations. The explicit time
integration leads the poor prediction of future accelerations.

The results using the method in [10] are shown in Fig. 6.
The smooth joint velocities trajectories were generated unlike
the case shown in Fig. 5. However, Fig. 6 shows the large
tracking errors of the end-effector position after 2s even
though the trajectory could be tracked in the case of Fig. 5.
The results by using the proposed method with the Newmark-
β method (β = 1/2, γ = 11/12) in Fig. 7 shows that the end-
effector could track the desired trajectory after 2s. Therefore,
the prediction of future Jacobian matrices is important for the
accuracy of the IK results.

We also tested the trajectories interpolation using B-
splines, we compare the results to the case of the Newmark-β

method which is shown in Fig. 7. The number of B-spline
bases was NB = 5 and the timespan between the two bases
was h = 0.02 s. The bases are used to estimate (N =)8
future time steps (i.e. 0.005, 0.01, ..., 0.04 s in the future).
The results using B-splines are shown in Fig. 8, one can
observe smaller accelerations than the case of the Newmark-
β method. It is because the Newmark-β only predicts one
future time step, whereas 8 future time steps were predicted
in the case of Fig. 8. On the other hand, the number of
variables of the QP problem in the case of Fig. 8 is 5 times
larger than that of Fig. 7.Therefore, the Newmark-β method
will be effective especially for on-line applications, while the
prediction using B-splines will be useful for precise off-line
applications.

C. Motion retargeting on humanoid

The proposed method was also tested on the motion
retargeting: the conversion from human motion to humanoid
motion. Since the measured human motion data contains
noises, the standard IK leads large accelerations. This sec-
tion evaluates whether the proposed method can generate
smoother joint trajectories.

The measured postures of human hands during a valve
opening task were converted to the joint trajectories of the
upper-body of humanoid robot HRP-4 [25]. The human
motion data was recorded in advance and the conversion
was performed by off-line computation. The inequality con-
straints about the upper and lower limits of joint angles
and velocities of the robot were also considered in the IK
computation.

The snapshots of the generated postures are shown in
Fig. 9. The generated trajectories of joint velocities are also
shown in Fig. 10. The upper graph in Fig. 10 shows the
results of joint velocities in the case of the standard IK, and
the lower graph shows those of the proposed IK with the
Newmark-β method. As can be seen from the figures, the
proposed method could generate smoother trajectories thanks
to the optimization of future accelerations.

V. CONCLUSION

In this paper, we proposed a novel method for inverse
kinematics that can evaluate accelerations at future time
instances. The proposed method is formulated as QP problem
of optimizing the future joint angles to track the reference
trajectory. The highlighted features of the proposed method
are:

• The prediction can generate smooth trajectories even
under the inequality constraints.

• The time integral formula for joint angles is incor-
porated into the QP problem by using the trajectory
parameterization. The implicit time integration like the
Newmark-β method can be utilized in the QP, which
leads to numerically stable future trajectories.

• The Jacobian matrices at future time instances are
predicted by the Taylor expansion using the Jacobian
derivatives. A simple and efficient computation of those
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Fig. 5. Results of standard IK. The left figure shows the Cartesian tracking error from the reference trajectory. The middle and right ones show the
generated joint velocities and accelerations, respectively.
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Fig. 6. Results of the IK method shown in [10]. The graphs and line types are the same as those in Fig. 5.
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Fig. 7. Results of the proposed IK with Newmark-β integration. The graphs and line types are the same as those in Fig. 5.
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Fig. 8. Results of the proposed IK with trajectory parameterization by B-splines. The graphs and line types are the same as those in Fig. 5.
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Fig. 9. Snapshots of the generated motion of humanoid HRP-4.
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Fig. 10. Comparison of the trajectories of joint velocities between the
standard IK and the proposed IK. The upper graph shows the result of the
standard IK, and the lower one shows those of the proposed IK.

derivatives are introduced using the comprehensive mo-
tion transformation [21].

The proposed method was compared to several inverse
kinematics methods by numerical tests using a planner
manipulator and a humanoid robot. The proposed method
showed better tracking performance as well as smoother joint
trajectories.
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