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Abstract: Automating snap assemblies is highly desirable but challenging due to their varied 
geometrical configurations and elastic components. A key aspect to automating snap assemblies 
is robot state estimation and corrective motion generation, here defined as snap sensing. While 
progress is being made, there are yet no robust systems that allow for snap sensing. To this end 
we have integrated a framework that consists of a control strategy and control framework that 
generalises to cantilever snaps of varying geometrical complexity. We have also integrated a 
robot state verification method (RCBHT) that encodes FT data to yield high-level intuitive 
behaviours and perform output verification. Optimisation procedures and Bayesian filtering have 
been included in the RCBHT to increase robustness and granularity. The system provides belief 
states for higher level behaviours allowing probabilistic state estimation and outcome 
verification. In this work, preliminary assembly failure characterisation has been conducted and 
provides insights into assembly failure dynamics. The results, though still in simulation, are 
promising as the framework has effectively executed cantilever snap assemblies and robust robot 
state estimation with parts of varying complexity in two different robotic systems. 
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1 Introduction 

An open research problem in manipulation and robotic 
assembly communities is the snap assembly automation. 
Snap assemblies are those that employ elastic snap parts. 
For snap assembly automation to be robust one must not 
only be able to implement a snapping mechanism but also 
understand potential failure patterns and recovery schemes. 
State estimation paired with corrective measures has  
been traditionally known as ‘active-sensing’ in the research 
community (Mihaylova et al., 2002). 

For the last two decades, the closely related task of  
peg-in-hole assembly has benefited from active sensing. 
Active sensing is also desirable in snap assemblies and is 
defined here as ‘snap sensing’. Progress is being made in 
sub-parts of the snap sensing problem; that is, in part’s 
localisation (Platt et al., 2011), force controller and control 
strategy formulation (Stolt et al., 2011; Chin et al., 2003; 
Sayler and Dillmann, 2011); but not much literature yet 
exists for robot state reasoning for snap assembly. 

 
 
 
 
 
 
 

In traditional peg-in-hole assemblies and manipulation, 
numerous methods have been used to estimate the robot’s 
internal state including: qualitative reasoning (McCarragher, 
1994); learning contacts and state transitions (Asada, 1990), 
and fuzzy logic (Skubic and Volz, 1997). More recently, 
probabilistic methods have been applied to generate  
more robust manipulation behaviours in the presence of 
uncertainty (Meeussen et al., 2007; Gadeyne et al., 2005). 

With regard to snap assemblies, it is first important to 
acknowledge different types of snap fasteners classes, of 
which there are three main classes: cantilever, annular, and 
torsional (Soddhi and Sonnenberg, 1999). Each of them has 
their nuances but all of them are characterised by elastic 
components (Meitinger and Pfeiffer, 1995). Cantilever 
snaps, are the most common, and manufactured goods with 
this fastener can vary in the number of built-in snaps. 
Manufactured parts typically range from 1, to 2, to 4, or 
more cantilever snaps in their mechanism. For these 
reasons, there is a higher degree of complexity in applying 
traditional robot estimation methods across snap classes and 
various geometrical scenarios. 
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State estimation has been implemented for single-snap 
cantilever parts using probabilistic techniques in Stolt  
et al. (2011). However, there are yet no frameworks that 
generalise to snaps of varying complexity to perform snap 
sensing. Our focus is to design such a framework for both 
industrial use and personal robots. To this end, we have 
developed and integrated a series of processes composed of: 
a generalisable control strategy; flexible and scalable force 
controllers; and an intuitive signal processing system that 
aids in robot state estimation and that is aided by Bayesian 
filtering and optimisation routines to deal with uncertainty. 

Previously in Rojas et al. (2012a), we developed the 
pivot approach (PA) control strategy for cantilever-snap 
type assemblies (for all abbreviations please refer to  
Section 14). The PA exploits snap parts’ hardware design to 
constraint the task’s motion and facilitate the assembly and 
signal interpretation processes (see Section 4). In Rojas  
et al. (2012d) we designed the relative-change based 
hierarchical taxonomy (RCBHT) snap verification system. 
The latter worked in concert with the PA and was built on 
the premise that relative-change patterns can be classified 
through a small category set while aided by contextual 
information (see Section 6). In Rojas et al. (2012b), we 
implemented system calibration procedures that increase the 
robustness of the RCBHT system when used with new 
robots or snap parts. In Rojas et al. (2012c), we designed 
and embedded a Bayesian filter (BF) algorithm as part of 
the RCBHT to yield temporal belief representations for the 
top three layers of the taxonomy. The probabilistic RCBHT 
(pRCBHT) provided a more granular understanding of task 
behaviours, improving robot state estimation and facilitating 
assembly failure characterisation. 

Each component of our framework has been shown to 
be a viable technology. We have sought to work towards  
the generalisability of the technology to different robotic 
systems and cantilever parts of varying complexity. Our 
methods have been applied to two robotic systems and two 
cantilever-snap mechanisms of varying complexity. More 
specifically, we have experimented with a Mitsubishi PA10 
7 DoF manipulator and a two-snap cantilever-based camera 
pack, and an upper torso anthropomorphic robot HIRO with 
a four-snap cantilever-based camera pack. All results thus 
far have been in simulation. Current efforts are focused in 
realising a physical real-time implementation of the system. 

The paper is organised as follows: Section 2 describes 
the experimental setup in detail. Section 4 describes the PA 

control strategy and Section 5 describes the control basis 
framework used in concert with the strategy to deploy a 
flexible and generalisable control scheme. Section 6 
introduces the RCBHT snap assembly estimation system 
and Section 9 presents the probabilistic version of the  
latter. Section 10 presents preliminary findings on failure 
characterisation in snap assemblies. Finally, Section 11 
presents relevant discussion points as well as future efforts 
and Section 12 summarises key aspects of our work. The 
Appendix includes a table with a summary of acronyms 
used in this work. 

2 Experimental setup 

For this work, two different robots and cantilever snap parts 
have been used to show the effectiveness of our framework 
in generalising snap assembly automation and robot state 
estimation. With all systems, robots were simulated using 
the OpenHRP environment (Kanehiro et al., 2004), CAD 
derived camera parts consisted of both male and female 
parts and 6 DoF FT sensors mounted on the robot wrist’s 
were used. 

Two experimental configurations were used. The first 
one consisted of a 7 DoF Mitsubishi PA-10 manipulator 
(Rojas et al., 2012a) with a female camera mold part rigidly 
held by a two-fingered gripper mounted on the wrist and a 
male part rigidly fixed to the ground. We name this 
experimental configuration the: female-active/male-passive 
FA-MP configuration. The male part consisted of two 
cantilever snaps and a vertically offset docking location as 
seen in Figure 1. In the second experimental configuration, 
the male-active/female-passive MA-FP configuration, a 
dual-arm 6 DoF anthropomorph HIRO robot was simulated. 
In this case, a male camera part was rigidly mounted on the 
robot’s wrist, while the female part, was rigidly fixed to the 
ground as seen in Figure 2. Furthermore the male camera 
part consisted of four (not two) snaps. In the simulation, the 
world reference frame was located at both manipulator’s 
bases. The tool point centre position and orientation, were 
determined with reference to the world coordinate frame To. 
On the other hand, the force and moment reference frames 
were determined with respect to the wrist’s reference frame 
Tw as in Figures 1 and 2. Our approach currently assumes 
prior knowledge of the pivot dock location and orientation. 
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Figure 1 Experimental setup for a PA10 robot and a two-snap male camera part (see online version for colours) 

 

Figure 2 Experimental setup for a HIRO robot and a four-snap male camera part (see online version for colours) 

 

 
3 Snap-parts classification 

Industrial snap-fasteners use varying degrees of geometrical 
complexity. There are three types of snap joints: cantilever, 
annular, and torsional (Soddhi and Sonnenberg, 1999).  
The most common is the cantilever snap, which is an  
elastic protruding beam that snaps with a linear push. 
Cantilever-based parts often come in male and female 
counterparts, where the male part commonly consists of 
one, two, four, or even more beams (Hoffman, 2005). 
Cantilever-snap fastening mechanisms aims to mechanically 
constrain the assembly motion through the use of docking 
points and interior wall linings as seen in Figure 1. The 
constrained motion’s goal is to facilitate parts entry by 
optimising the alignment of both male and female parts. 

4 PA assembly strategy 

The PA is an assembly control strategy with multiple goals: 

1 to facilitate the interpretation of complex  
spatio-temporal FT signals by constraining the 
assembly motion and enabling similar-patterned signals 
to recur over assemblies 

2 to yield high-level intuitive states that generalise to 
snap parts of differing geometry and whose state 
transitions can also generalise 

3 to be deployed in conjunction with a flexible control 
framework that generalises for snap parts of differing 
geometrical complexities. 

4.1 Motion constrain design 

One of the most significant challenges in estimating the 
assembly task’s robot state comes from the interpretation of 
the FT signals. Such signals are characterised by significant 
noise and in the case of cantilever snap assemblies, where 
there are more than one snap, complex spatio-temporal 
signal patterns are generated throughout the duration of the 
task in all six FT axes. For this reason, the snap assembly 
greatly benefits from a strategy that can minimise noise and 
complexity. To this end the PA strategy constraints the 
motion of the snap assembly to: 

1 minimise spatio-temporal complexity 

2 generate similar-patterned signals across assembly trials 
to facilitate their interpretation for robot state 
estimation. 
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Furthermore, the strategy conveniently exploits the  
built-in constraint motion mechanisms that characterise  
all manufactured snap-parts as discussed in Section 3. 
Manufactured cantilever-snaps of various complexities 
usually have a pivoting dock where male and female parts 
lock their position before attempting the parts insertion. 
Two and four-snap parts can be visualised in Figures 1 and 
2 respectively. 

4.2 PA states 

The PA strategy decomposes the cantilever-snap assembly 
into five (or six) intuitive states that are generalisable for 
parts of varying complexities, that is: homing, approach, 
rotation, (alignment), insertion, and mating. The additional 
state is necessary when the docking pivot is not aligned with 
the wall ridge of the parts but vertically offset. That is, in 
Figure 1 the docking pivot is offset, while in Figure 2 the 
docking pivot is aligned with the wall ridge of both parts. 
The Alignment stage is necessary when the docking pivot is 
offset to optimise part’s entry. 

Recall that each of the PA control strategy states  
is to be connected to ‘controller templates’, to enable 
generalisations (Section 5). Our initial attempt at  
elaborating the strategy with the controller templates took 
place with the PA10 robot experimental configuration  
[i.e., with a 2-snaps part and offset pivoting dock  
(Rojas et al., 2012a)]. Later work refined the approach by 
replacing a force-position-based controller template in the 
rotation stage by a moment-force-based controller that was 
tested in the HIRO robot experimental configuration with a 
4-snaps part, and a non-offset pivoting dock (Rojas et al., 
2012c). Controller strategy details are described in the 
following two subsections. 

4.2.1 PA10 control strategy configuration 

The robot starts at the homing position and uses a  
position-based ‘approach controller’ φAPR, to follow a 
curved trajectory which moves the tool-centre point to the 
docking position’s neighbouring area to then slowly 
approach the pivoting dock. For the offset pivoting dock, 
contact is made at the top-edge of the docking position  
(see Figure 1) to achieve a height equal to that of the male 
snap beams. Such approach optimised parts’ entry when the 
rotation state is finished. The female’s part entry angle α 
ranges between α1 ≤ α ≤ α2 where, α2 < 90° and ensures 
that no joint limits are violated, and α1 > 0° and ensures that 
the female part’s does not immediately contact the male 
snaps. In our work, α = 22.5° as in Figure 1. After contact, 
state 2 uses a position-based ‘rotation controller’ πROT, to 
rotate the wrist in incremental steps until contact is made 
with the snaps. Upon contact, the reached location is near 
optimal and requires further alignment as provided by the 
moment-force-based ‘alignment controller’ πALGN in state 3. 
This controller sets its reference moment and force  
set points to < 0, 0, 0 > Newton and Newton-metres 
respectively (see Section 5). Such parameterisation drives 
the alignment of parts and sets the stage for the snap 
insertion. The latter was activated when a 1 mm dip was 
registered in the female snap upon alignment. The insertion 
also uses a moment-force-based ‘insertion controller’ πCI. 
The difference between state 3 and 4 are the reference 
values for the controller. In this state, the desired forces are 
set to fref =< 0, 0, −0.5 > N to drive the insertion vertically 
downwards until no further motion is possible. Finally,  
state 5 activates a force-position ‘mating controller’ to 
maintain position and contact forces between the parts. 

The PA10 state machine is shown in Figure 5, and the 
action sequence in Figure 3. 

Figure 3 Sequential snapshots of the PA for the PA10 robot and two-snap parts are shown in this figure (see online version for colours) 
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Figure 4 The PA with no offset docking position is composed of four non-trivial states: approach, rotation, snap, and mating  
(see online version for colours) 

 

 
4.2.2 HIRO control strategy configuration 

In our later work, we also attempted to use the PA for a 
camera part with four snaps and no offsetting docking pivot. 
In this work, the five standard PA states were used. All 
controller templates, except for rotation, were the same  
as in our previous work. The rotation controller was  
changed from a purely position controller to a compound 
moment-force controller πROT for three reasons: 

1 We preferred to have a compound force-moment 
controller maintain the contact between the male and 
female parts during rotation instead of a purely 
positional controller. The dominant force controller φmr 
uses two reference parameters to push the female part 
vertically downwards (–z direction) and against the 
male part’s wall (+x direction), while the y-direction 
reference is set to zero as no horizontal push is 
necessary: fref = {10, 0, 0.25} N. 

2 Similarly, instead of commanding a position-based 
rotation, this controller drives the rotation of the male 
part as response to moment parameters along the  
y-direction for the subordinate moment controller φmr, 
such that mref = {0, 20, 0} Nm. 

All reference parameters were applied in world coordinates. 
Note that the coordinate frame references used in this 

experimental configuration have a direct effect on how our 
signal processing will work as explained in Sections 6, 9, 
and 11). 

Finally, transition parameters are presented. The 
Approach state transitions to the rotation state when the 
x-force exceeds 9 N. The rotation state transitions to the 
snap state when the y-moment exceeds 0.60 Nm. 
Establishing transition thresholds is not trivial and 
challenges are discussed in Section 11. 

 

5 Controller templates 

Controller templates are control units that work in 
conjunction with each state in the PA. Such controller 
templates are required to be part of a flexible control 
framework that allows the templates to be modified easily to 
adapt to varying degrees of geometrical complexity  
within the cantilever-snap class. To this end the control 
basis framework was selected as a control paradigm to work 
with. 

The control basis flexibly but systematically builds and 
modifies controllers. The approach decomposes a control 
problem into a set of asymptotically stable modular control 
elements that can be combined and flexibly rearranged to 
achieve desired strategies. The framework can combine 
controllers through the use of a null space operator (Rojas 
and Peters, 2012) and can sequentially combine primitive or 
compound controllers. Furthermore, the approach 
methodically determines which sensor inputs and motor 
actuators each controllers should use (not all sensor and 
motor resources need to be used every time) as well as the 
types of transformations necessary to transform incoming 
and outgoing data to the right space. In effect, the 
framework uses a small set of basis controllers and 
combines them in ways to effectively create sets of 
instructions or objectives to achieve a wide range of 
behaviours (Brock et al., 2005). 

This approach was chosen as a foundational framework 
upon which we can develop a variety control strategies 
across industrial and humanoid robots to perform snap 
assemblies on different snap classes, each of which will 
require different approaches and controllers due to their 
differing geometrical properties. 
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5.1 Mathematical derivation 

A basic mathematical definition is presented here for the 
control basis. For further details see Rojas and Peters 
(2012). Primitive controllers φi, where i = 1 ~ m, are 
elements in a basis set of controllers, Φ, such that φi ∈ Φ. A 
primitive controller optimises a partitioned portion of a 
designated control space (like joint angle space or Cartesian 
force space) and can be understood as the minimisation of a 
discrete basin of attraction. The basins of attraction are 
formulated through artificial potential functions defined 
over a typed domain, Xi, which are defined as the square of 
the error, where φi(ρ) = ρTρ and ρ, is the difference between 
a reference input and a plant input, ρ = qref − qdes, at every 
time step. 

Each controller reaches its objective by performing 
greedy descent, ∇φi, on the artificial potential function, 
while engaging selected sensor inputs and motor outputs. 
The surface potential minimisation in a specified domain 
space, Xi, over time is defined as: 

.
i

i
x i t

φ
φ

∂
∇ =

∂
 (1) 

Each basis controller is bound to a selected subset of sensor 
input resources γj ∈ Γj and output motor resources γk ∈ Γk 
relevant to the task. Input and output signals are processed 
through sensor transforms (i.e., forward kinematics), sj, and 
effector transforms (i.e., Jacobian), ek to ensure that a task is 
guaranteed to operate within the region of a corresponding 
basis. 

The closed-loop controller is implemented then, when 
the error between the incoming sensor information and the 
reference position is minimised within the discrete artificial 
potential basin, ( ( )),

ix i ref j jsφ∇ − Γx  and the gradient result 

is mapped to the output configuration space through an 
effector transform, ek(Γl). Given that the input data is of the 
same domain type as the artificial potential function, and the 
effector transform is of the same dimensions as the potential 
function, the controller’s output, ,

ky iφ∇  is defined as: 

( ) ( )( ).k i

T
jy i k l x i ref je sφ φ Γ∇ = Γ ∇ −x  (2) 

For convenience, the above expression is expressed in 
simplified notation as ( )

( )| ( ).j j

k l

s
i refeφ Γ

Γ x  If the controller has 

zero reference, then it can be omitted: ( )
( )| .j j

k l

s
i eφ Γ

Γ  To 

concurrently optimise multiple goals, secondary control 
updates are projected onto the nullspace of primary control 
updates. This relationship is expressed in a compound 
controller π as having the secondary controller φ2 be 
subject-to the primary controller φ1, and is expressed as: 

( ) ( )1 22 1 1 ,T
y y yyφ φφ φ φ∇ = ∇ + ∇∇N  (3) 

where 1 1 1( ) ( ) ( ),T T T
y y yIφ φ φ∇ ≡ − ∇ + ∇N  and I, is the 

identity matrix, y is an n-dimensional space, and the 
nullspace of 1

T
yφ∇  is a (n – 1) dimensional space 

orthogonal to the direction of steepest descent (Platt, 2006). 
For convenience, equation (3) is written as πk : φ2  φ1. 
Through nullspace composition techniques there is no need 
to specify how control resources will be shared across  
sub-controllers as long as the same control resources are 
used. 

5.2 Assembly control basis set 

The following primitive and compound controllers were 
implemented for both a Mitsubishi PA-10 serial link 
manipulator with a typical shoulder-elbow-wrist 7 DoF 
configuration and a HIRO anthropomorph with two 6 DoF 
arms. Position, force, and moment primitives are first 
introduced, and then references to how they are used in the 
assembly approach. 

5.2.1 The position primitive 

The position controller is based on the Jacobian transpose 
control method, where at each cycle, joint displacements are 
updated according to: 

,T
pJ KΔ =q e  (4) 

where △q ∈ R7×1 is a displacement of joint angles,  
JT ∈ R7×6 is the manipulator Jacobian, Kp ∈ R7×7 is the 
position gain, and e ∈ R6×1 is the error in Cartesian 
positions. 

For the position primitive, the sensor transform spr is the 
identity and operates on all joints and conveniently 
represented as: spr(γjoint_pos). The effector transform epr is the 
Jacobian transpose and effects torque updates in all joint 
motors: epr(γjoint). 

The square Cartesian error is used as the error function: 
1
2 ,T

p pKφ = e e  such that the gradient is ∇xφp = Kpe. The 
basis controller can thus be defined as: 

( ) ( )( ) ,p

T
joint ref pr Iq p pr x p seφ φΓ − Γ∇ = ∇ x  (5) 

or, more succinctly as ( )
( )| ( ).pr I

pr joint

s
p refeφ Γ

Γ x  

Note that for our current work, a position controller was 
used in both the approach and rotation stages of the PA  
(see details in Section 4.2). Each controller is provided with 
a different trajectory point set and are referred to 
independently as the approach controller φAPR and the 
rotation controller φROT. 

5.2.2 The moment and force primitives 

Two controllers, force and moment primitives, update joint 
angle configurations so as to apply desired forces or 
moments. The force controller updates the end-effecter’s 
location while the moment controller updates its pose. 

( )1
1 7 ,T

refj fK J K−
− −Δ = f fq  (6) 
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( )1
1 7 ,T

refj mK J K−
− −Δ = m mq  (7) 

where (fref − f) and (mref − m) are the force and moment 
errors conformed by the first three and last three elements in 
a R6×1 vector respectively; and, Kf and Km are the diagonal 
elements of a positive definite matrix R6×6 that multiplied 
by the Jacobian transpose JT ∈ R7×6 generate torque updates 
for the appropriate joint configurations. The inverse of Kj 
and the other gains are precomputed to generate 
corresponding joint angle updates for each control cycle. 

The force and moment residual controllers have sensor 
transforms sfr(γforce) and smr(γmoment) that return the F/T 
sensor data respectively. The artificial potential functions 
for the force and moment residual functions are proportional 
to the square of their errors: 

( ) ( )21 1,     ,
2 2ref reffr f mr mK Kφ φ− −= =f f m m  (8) 

and they are differentiated with respect to their joint angle 
configurations to displace the trusses and minimise 
residuals: 

( ) ( )2
,     .ref refq fr f mr mK Kφ φ− −∇ = − ∇ = −f f m m  (9) 

The controllers also have effector transforms efr(γtorque) and 
emr(γtorque) that converts appropriate force updates into joint 
torque updates by multiplying the inverse position gains and 
Jacobian transpose: 1

1 | |( ) ( , , )
k

T
fr torque je K J Jγ γγ −

Γ= …  and 
1

1 | |( ) ( , , )
l

T
mr torque je K J Jγ γγ −

Γ= …  to produce the following 

primitive controllers: 
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γ

γ
φ
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In the subsequent subsections, compound controllers are 
introduced. 

5.2.3 Rotation controller 

The rotation controller πROT is composed of a dominant 
force controller φfr and a subordinate moment controller φmr. 
The controller’s subordinate update commands are projected 
into the nullspace of the dominant controller’s update  
space to optimise both objectives. The force controller  
uses two reference parameters to push the female part down 
and against the male part’s wall, while the y-direction 
reference is set to zero as no horizontal push is necessary: 
fref = {10, 0, 0.25} N. As for φmr, its reference parameter 
applies a torque in the y-direction mref = {0, 20, 0} Nm. All 
reference parameters are applied in world coordinates. 
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5.2.4 Alignment controller 

The alignment controller πALGN is a composite moment-force 
controller used in state 3 of the PA to align the parts. πALGN 
minimises residual moments and forces experienced when 
the female part has reached a near optimum insertion entry 
position with the male part after the rotation stage. The 
minimisation of residual moments with zero reference 
moment by the dominant controller aligns the wrist parallel 
to its mating part. The subordinate force residual controller 
φfr uses a small force reference in the negative z-direction to 
maintain a gentle contact through the alignment stage, 
where fd =< 0, 0, −0.1 > N. πALGN is defined in equation (13). 
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5.2.5 Compliant insertion controller 

The compliant insertion controller πCI is similar to the 
alignment controller used in state 4 of the PA. This 
controller however has a higher magnitude value for the 
force reference in the z-direction such that fd =< 0, 0, −0.5 > 
N. This controller is activated once the alignment has taken 
place and the insertion can proceed. The larger reference 
value is designed to drive the insertion until an equal and 
opposite force is generated by contact with the male’s part 
back wall. 

5.2.6 Mating controller 

The last controller is the mating controller πMAT is a 
composite force-position controller used in state 5 of the 
PA. This controller uses the dominant force controller to 
maintain the mating position achieved upon contact during 
with the male’s part back wall while the subordinate 
position controller seeks to maintain the position detected at 
contact. The mating controller is defined in equation (14). 
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6 The relative change-based hierarchical 
taxonomy 

The hierarchical taxonomy’s goal was to connect human 
apropos actions like: ‘approaching’, ‘rotating’, ‘aligning’, 
‘snapped’, and ‘mated’ with LLB’s in a context-sensitive 
manner. One of the main challenges encountered in 
interpreting force signals is their inherent noise and  
spatio-temporal complexity. However, the force signals do 
inherently possess characteristics that describe the task at 
hand. The authors hypothesised that such characteristics 
could be extracted by looking at how temporal relative 
changes were associated to each other and contextualised by 
the state in which they occur. In so doing, intuitive 
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behaviour sequence’s can be extracted and their outcome 
examined. This level of discrimination is significant as it 
can be expanded to a real-time implementation and allow to 
reason about the state to perform corrective motions if 
necessary. 

To bootstrap the approach, we partitioned the data into 
linear segments that approximate the data and classify the 
gradients according to magnitude per a small set of criteria. 
The next layer of abstraction examines at ordered-pair 
primitive sequences, and according to the gradient patterns 
presented and a small set of classification criteria, they  
are categorised into one of several types of motion 
compositions. The third layer abstracts sequences of motion 
compositions to identify LLB’s, while the fourth layer looks 
at what LLB’s are present in which states to determine if 
desired high-level behaviours are present. The final layer 
outputs the verification process results’ according to 
whether or not the desired sequence of HLB’s is present or 
not. A visualisation of the hierarchical taxonomy can be 
seen in Figure 6. 

6.1 Primitive layer 

The primitives layer requires that each signal is partitioned 
into linear segments of data that closely approximate the 
original signal. Linear regression in concert with a 
correlation measure (the determination coefficient R2) is 
used to partition the data whenever a minimum correlation 
threshold is crossed. If the determination coefficient drops 
under a given threshold the linear fit is partitioned and a 
new regression is started. The R2 coefficient is a correlation 
measure that studies the ratio of the sum of the squares of 
the residual errors between the original data y and the fit 
data ŷ  to the sum of the variance 2

yσ  as shown in  
equation (15). 
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The threshold used to partition the data was set at 0.70,  
such that if the correlation dropped to under 70%, a linear 
segment or ‘partition’ would be generated, and a new one 
would start at the next data point. The data was traversed by 
a window equal to five data points (the data was sampled at 
a frequency of 1 kHz by the simulation). The threshold 
values and the window length were empirically selected to 
partition the data sufficiently to capture relevant changes in 
the signals. 

Each partition was accompanied by a data structure with 
seven types of information about itself: the average value 
across data points, the maximum value, the minimum value, 
the start time, the end time, the gradient value, and a 
gradient label. With respect to the latter, nine gradient  
labels (positive impulse, ‘pimp’; big, medium, and small  
positive gradients, ‘b/m/spos’; constant gradients, ‘const’; 
and their negative equivalents, ‘nimp’, ‘b/m/s/neg’) were 
assigned according to ranges summarised in Figure 7. The 
classification first attempts to separate instances of data in 

which contact or mating takes place. On the one hand, 
contact phenomena is characterised by very rapid  
and large changes in force signals, almost approximating an 
impulse. To this end, positive and negative impulses were 
categorised for gradients with values greater or less than 70. 
On the other hand, for mating situations, there is little or no 
change in force, for this reason a constant label was 
assigned to signals with gradient values less than the 
absolute value of 1. In between these two extremes we 
chose to have three gradient categories for both positive and 
negative signals to give a general idea of the magnitude 
change registered for a signal. Figure 10 shows how the 
segmentation looks like across all five states (which are 
represented by five coloured boxes) for the force signal in 
the x direction for PA10 related-experiments. 

Figure 5 The PA state machine for the PA10 robot and two-snap 
parts are shown in this figure (see online version  
for colours) 

 
Notes: Each of the automata states (red) is accompanied 

by a controller template (green). Transition 
conditions are specified in blue. 

Figure 6 The relative change-based hierarchical taxonomy 
(RCBHT) for cantilever-snap assembly verification 
(see online version for colours) 
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Figure 7 Gradient values classification for the primitives layers 
(see online version for colours) 

 

6.2 Composites 

The next layer of abstraction identifies seven basic motions 
compositions (MC) by looking at ordered-pair sequences of 
primitives. The MC layer set is comprised of: adjustment, 
increase, decrease, constant, contact, positive contact, 
negative contact, and unstable motions. The positive and 
negative contacts, imply the sign of the (gradient) of the 
action. 

A protocol was followed to minimise the effects of noise 
or erroneous segmentation. With respect to adjustments, 
primitives with big-small positive or negative gradients 
were considered as a positive or negative primitive category 
respectively. If a positive grouped primitive was followed 
by a negative grouped primitive an adjustment classification 

would be assigned to the ordered pair. Adjustments are 
motions in which the wrist records a quick ‘back-and-forth’ 
motion typically seen during alignment or insertion 
operations as the force controller tries to minimise residual 
errors. The reason to group positive and negative gradients 
is to maximise the likelihood of group adjustments even 
when the rate of change may be slightly different. 
Furthermore, for this particular category, we used a window 
of two data points instead of one to look for a matching pair 
(all other categories looked at the contiguous primitive). 
That is, if after finding a positive or negative gradient, and if 
the next data point was not negative or positive respectively, 
we would look at the next data point to look for a pair. Such 
procedure mitigates the presence of spurious signals that 
could prevent the proper grouping of an adjustment 
movement. 

The ordered pair groupings for motion composition 
classification are summarised in Figure 8. Note that the 
table contains sub-tables representing five primitive 
groupings. The first primitive is in bold text followed by a 
listing of second primitives and the corresponding motion 
composition and label used in the plot as illustrated in 
Figure 8. As with the primitives layer, 11 pieces of 
information were collected for each MC: composition label, 
average value, root means square value, amplitude, the 
labels of the first and second primitives, the starting and 
ending times for both primitives, and the average time for 
both primitives. 

Figure 8 Motion compositions according to primitive pairs in any order (see online version for colours) 

 

Figure 9 Comparison of the LLBs for both the PA10 and HIRO experimental configurations (see online version for colours) 

 

 

  



 Towards snap sensing 79 

6.2.1 Refinement 

After the MCs are generated, a refinement phase was used 
to filter less significant signals and augment more 
significant signals. To do so, the compositions were 
analysed under three contexts: a composition’s time 
duration, a composition’s amplitude magnitude, and 
composition repetition patterns. 

• Time duration context: this filter examines two 
contiguous MCs. If either composition is seven times 
bigger than the other, the smaller composition is 
merged to the larger one and all data is updated 
correspondingly. The duration ratio was determined 
empirically. 

• Amplitude value context: this filter pertains to the 
formation of adjustment signals and constant signals. 
We considered three possibilities: 
1 If there are contiguous primitives of types PC/NC 

or NC/PC, and if their amplitude is ten times 
smaller than the largest amplitude registered in the 
assembly, then treat them as an adjustment. This 
criteria seeks to disambiguate real contact signals 
and false ones by looking at their amplitude. Real 
contacts are characterised by large values. 

2 Similarly, if their is either an increase followed by 
a decrease and vice-versa, and both compositions 
have a similar amplitude (within (50%) of each 
other and they have a similar average value (100%) 
of each other, then merge as an adjustment and 
update the data correspondingly. 

3 If there is a sequence of an increase followed by a 
constant, or a decrease followed by a constant and 
vice-versa, and they have a similar amplitude 
(150%) and similar average value (100%), then 
merge them as a constant and update their 
information. This last filter targets small noisy 
signals that appear as increases or decreases but 
that in effect are constants. The amplitude 
threshold value is larger here to give more 
possibilities of catching increases or decreases 
within the narrow range of the constant’s 
amplitude. 

• Repeated compositions: the last filter takes signals that 
repeat and merges them as one. This filter is run 
iteratively until no more repetitions occur in the data. 

The post-refinement composition layer results are shown in 
Figure 10 for a force signal sample in a PA trial. 

 

Figure 10 This figure shows data related to the first four layers of the RCBHT (see online version for colours) 

 
Notes: (1) The primitive layer: red line linear segments try to approximate original data and represent primitives.  

(2) The composites layer: composed by analysis of neighbouring primitives. Corresponding labels appear in black at the 
top-most part of screen. (3) The LLB layer: LLBs composed by analysis of neighbouring composites. Corresponding labels 
appear in uppercase red letters below the graph. (4) The HLB layer: HLBs derive from key LLBs. Corresponding labels 
appear in green at the bottom-most part of screen. 
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6.3 Low-level behaviours 

The taxonomy’s third layer considers motion composition 
ordered pairs along with signal duration and amplitude to 
yield classifications. Eight LLB classifications were derived 
and labelled as: push, ‘PS’, pull, ‘PS’, contact, ‘CT’, fixed, 
‘FX’, alignment, ‘ALIGN’, shift, ‘SH’, and noise, ‘N’. The 
LLB formulation criteria is similar to those at the MC level. 
That is, for a pair of increase MCs labels, or decrease MCs 
labels, or constant MCs labels or adjust MCs labels; pull, 
push, fixed, or adjust LLBs are assigned respectively. As for 
contacts, if there is a positive contact followed by a  
negative one, or vice-versa, a contact LLB is assigned.  
One major difference between the MC level and the LLB 
level is introduction a shifting behaviour ‘SH’. Shifts and 
alignments are similar but differ in that, whenever there are 
two contiguous adjustment compositions, if the second 
composite’s amplitude is larger than the first, label it as 
‘SH’ LLB, if smaller label it ‘ALGN’. 

With regards to the time duration context, if any motion 
composition lasts more that 100 milliseconds, it can by itself 
be a low-level behaviour, or if the contiguous composition 
is of the same classification they can also merge 
correspondingly. If any composition is less than the allotted 
duration and it does not have a matching pair, it is 
considered a noisy signal. With regards to the amplitude 
context, if there are two adjustments within a window of 
two data points, and their amplitudes decrease, render such 
a pair as an alignment, otherwise consider it a shift  
(or growing de-alignment). As for paired increase, 
decreases, and constants, they will yield pull, push, and 
fixed low-level behaviours correspondingly. Finally, as for 
contacts, if there is a positive contact followed by a negative 
one, or vice-versa, or even a stand-alone contact motion 
primitive, render this is a low-level contact behaviour. 

6.3.1 Refinement 

The LLB layer is also followed by a refinement phase. The 
latter filters based on the same three contexts as used before: 

• Time context: this filter examines two contiguous 
behaviours (except for contacts). If either behaviour is 
five times bigger than the other, then merge towards the 
longer behaviour and update the data correspondingly. 
LLB’s are longer than compositions, so this threshold 
value is to be smaller than the one used for the 
composition’s time duration filtering. 

• Amplitude context: the amplitude context pertains to 
alignments and shifts and there are four possible 
scenarios: 

1 If there is a push-pull pair in either order and they 
have similar amplitudes (150%) and similar 
average values (100%) render then an alignment. 

2 If there is a shift followed by an alignment, or an 
alignment followed by a shift, where the second 
behaviour has a smaller amplitude, then merge 
these as an alignment. This kind of merging is 
interesting because it can only be seen at this level 
of abstraction. While there may be a contiguous 
alignment-shift pair that was irreconcilable earlier, 
it can now be identified as an alignment. The same 
is done for a shift. 

3 Finally if there is an alignment followed by a pull 
or push or vice versa and they have similar 
amplitude (50%) and similar average value 
(100%), then merge as an alignment. In this case, 
after the previous refinement steps have been 
executed, if there are outstanding alignment-push 
or -pull pairs, the second behaviour is a considered 
a continuation of the alignment and is merged. 
Shifts are treated similarly. 

• Repeated behaviours: as in the compositions layer, any 
two repeated behaviours can be merged as one. The 
post-refinement LLB layer is shown in Figure 10 for a 
sample signal in the PA. 

6.4 High-level behaviours 

The fifth layer contextualises the process monitoring by 
asking what low-level behaviours principally describe the 
high-level human apropos behaviours found in the PA: 
approach, rotation, (alignment), snap insertion, and mating1. 

Then, if key combinations of LLB’s across the six force 
axes for a specific state are identified, then a certain HLB 
can be ascertained. For each state and corresponding HLB 
an LLB or sequence of LLB’s are matched with a particular 
force axis as part of the selected criteria. The criteria is 
connected both to the PA states, to the controller templates, 
and to the coordinate frame assignments in local coordinates 
(see Figures 1 and 2). Given that we have two 
implementations of the PA and controller templates for the 
PA10-two snaps configuration and the HIRO-four snaps 
configuration we have two sets of key LLB criteria. They 
are presented in Figure 9. 

6.4.1 Key LLB’s for PA10-two snap experimental 
configuration 

The reasoning behind the selection of LLB’s and axis for 
the PA is intuitive. In state 2, the rotation state, the wrist 
maintains a constant force along the z-direction, while the 
force along the y-direction diminishes as the wrist aligns 
itself with male part. The rotation about the x-axis can be 
seen through a series of large alignments along the 
moment’s x-direction. For state 3, all axes are aligning in 
some form. For force elements, there is an alignment in 
position, for moment elements there is an alignment in 
orientation. The only exception to this is the moment about 
the z-direction. A pattern emerges where the moment axis 
that corresponds to the wrist’s direction of motion for the 
insertion (i.e., the z-axis for the PA) experiences little to no 
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change throughout the assembly due to the nature of parts in 
the assembly task. For state 4, in the insertion state, Rusli 
studied typical force patterns for manually effected snap 
assemblies and states that initial resistance is characterises 
the insertion until the snap-catch slips behind the undercut 
in the mating part, at which time an interlock occurs. In 
other words, one a large increase in force is expected upon 
contact, followed by a large decrease in force. Hence, we 
expect to see a contact label followed by an alignment label. 
Other axis can expect to experience an alignment at this 
stage. Finally, for the mating state, all signals should present 
no motion change and thus be classified with a FX 
behaviour. 

6.4.2 Key LLB’s for HIRO-four snap experimental 
configuration 

In this experimental configuration, the rotation controller is 
applying a constant force in both the x-and z-directions and 
a constant moment in the y-direction. For this reason we 
expect to find FX LLB tags in this state. Then, as for the 
insertion stage, experimental results consistently show that 
for successful assemblies there are CT LLB tags both in the 
force’s x-direction and in the moment’s y-direction. Both 
are correlated in that they represent the robot’s downwards 
assembly motion. The rest of the axes are either aligning or 
fixed, that is, ALGN or FX tags should be seen in them. 
Finally, for the Mating state, there should be no movement 

and hence no change in gradient values if the structure is 
stable. FX labels are expected in all axis. 

The fourth layer results are shown in Figure 10. If the 
high-level behaviours can be ascertained, they print on the 
plot in green colour. If they cannot be verified, they plot in 
red colour representing failure. 

6.5 Verification layer 

The fifth and last layer declares whether the assembly was 
entirely successful or not by posting a ‘successful’ or 
‘failure’ label on each of the six axes of the FT plots. 

7 PA10 and HIRO RCBHT experimental results 

In this section we present the result of a trial in which each 
of the six force signals is analysed and combined to do a 
system verification. The results are visualised in Figure 11. 
The visualisation of all the results in Figure 11 contains very 
intuitive patterns between the LLB’s and the HLB’s for the 
PA. As noted in Section 6.4, the rotation behaviour is 
clearly identified by the pull in the Fy direction, the fixed 
position in the Fz direction, and by the alignment motion in 
the Mx direction. The align behaviour is characterised by 
alignment LLB’s across all states. The snap insertion is 
distinguished by the high-force contact behaviour 
characteristic along the direction of insertion Fz. The last 
state is as expected characterised by fixed behaviours as at 
the mating stage no further motion should be experienced. 

Figure 11 SV layer: if all HLB’s are present, then the snap is successful (see online version for colours) 
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The system also predicted cases in which the assembly was 
a failure. One example is shown in Figure 12. During this 
attempt, the force controller encountered difficulties in 
properly aligning the parts as can be seen in the shifts in Mx 
and My. The failure to align not only result in a lack of 
contact behaviour in Fz but also a motion away from mating 
as visualised in the fifth state for Mx and My and as well as 
by the fact that the first snap did not converge to its home 
position. The verification system noted this by displaying 
the ‘snap’ and ‘mating’ states in red and by the ‘failure’ 
label at the top of each plot. The reason for failure may be 
due to unexpected force values that sometimes are rendered 
by our simulation programme upon contact. OpenHRP was 
originally designed for walking humanoid robots and its 
dynamic engine is not well suited for small contacts. 

7.1 Analysis of PA10-HIRO RCBHT experimental 
results 

For the PA10 experimental configuration, the system was 
run on a set of six simulation trials with 100% accuracy rate 
in its prediction. For the HIRO experimental configuration, 
the system was run on a set of fifteen simulations trials also 
with 100% accuracy rate. The results show that by limiting 
the way a cantilever snap assembly can be generated and 
that by using a small set of classification categories that 
encode relative change at different abstraction levels, force 
signals can be interpreted at a human apropos level of 

intuition that correspond to the assembly’s action states. The 
method effectively determined the status of successful and 
failed assemblies. 

One limitation however was an issue of false-positives. 
While the SVL layer correctly assessed the outcome based 
on the LLB tags present, two trials assessed as failures were 
in fact successful. The problem was not due to errors in the 
HLB or SVL layers of the system but on the fact that LLB 
compositions result from primitives and motion 
compositions classification in the first two taxonomy layers. 
On two occasions the RCBHT generated an ‘AL’ LLB tag 
for a task segment where an ‘FX’ corresponded. This 
miscalculation is due to the hard-coded nature of gradient 
classification schemes in the primitives layer of the RCBHT 
system. To this end, we designed a Gradient Calibration 
method to optimise gradient classification values. The 
routine is described in Section 8. 

Another limitation in the system is the uncertainty 
rendered by both the noise in FT signals and the 
interpretation schemes of the RCBHT in themselves. 
Furthermore in the HLB and SVL layer, outcome 
verification is decided based on the mere presence of LLB’s 
which in some cases may not be predominant. To this end, a 
Bayesian filtering mechanism was applied to the higher-
level layers of the RCBHT system so as to reduce 
uncertainty in their predictions. The probabilistic filter is 
described in Section 9. 

Figure 12 The snap verification system accurately detected the robot’s failure to snap and mate the parts in this task  
(see online version for colours) 
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Figure 13 Summary of ‘pimp’ threshold assignments across force axes as part of gradient contextualisation (see online version for colours) 

 

 
8 Gradient parameter optimisation 

In the context of the PA and the RCBHT system, a gradient 
calibration routine was devised to acquire a set of gradient 
thresholds for the primitive layer that will be effective for a 
given robot-snap-part pair. That is, obtaining gradients that 
will optimally classify the FT signals into their appropriate 
labels. As mentioned in Section 6.1, the most important 
labels in our gradient classification scheme are the ones 
used to classify contacts (which yield large changes in FT 
data) and constant actions or fixed behaviours (where there 
is little to no change in FT data). Both of these labels have a 
positive and negative version. A total of eight labels are 
used to classify the gradient space as described in Section 
6.1: pimp, bpos, mpos, spos, sneg, mneg, bneg, nimp. In our 
previous works, these values were obtained by trial and 
error. But in this work we devised a scheme to calibrate 
these values such that they will be effective in appropriately 
classifying FT signals as long as the same robot is working 
with the same part. This statement assumes that the PA is 
utilised. This is important as the PA constraints the snap 
assembly motion in the same way across trial thus enabling 
for similar patterns, in form and in magnitude, of FT signals 
to be generated across trials. 

8.1 Gradient thresholds determination 

The first step as part of gradient calibration consists in 
determining the values for the contact gradients (labelled 
‘pimp’ or ‘nimp’) and the constant gradients (between 
‘spos’ and ‘sneg’). Once these thresholds have been 
computed the space between ‘spos’ and ‘bpos’ and their 
negative counterpart can be divided into equally spaced 
segments, as in the table of Figure 7. In our work, we 
evaluated values of gradients within specific automata states 
(further detailed in the next section). A gradient was 
considered to exist within an automata state if the beginning 
of the primitive (or linear segment) started after the 
automata state began and finished before the automata state 
terminated. 

8.1.1 Contacts 

For contact LLBs, as per our PA key LLB selection criteria, 
typically occur in the Snap state of the Fx and My axes, and 
they only occur a small number of times. Statistical 
measures like the mean, median, or mode are not useful to 
extract an effective contact threshold. Instead, the  
absolute value of the maximum gradient is used. Once the 
maximum gradient is found, the ‘pimp’ label in the 
primitive’s layer is scaled by a constant k, such that:  
pimp = k ∗ (max(abs(gradm)stateaxis)), m ∈ M, where M is 
the set of gradients in a given automata state in a given axis. 
Since this calibrated contact value will be used across trials, 

the value is scaled down to increase the likelihood of 
capturing contacts with similar values across trials. During 
the training phase an initial scaling factor of 0.90 was used 
but was later changed to 0.85 and will be described in the 
experiments. 

8.1.2 Constants 

For fixed LLBs, the mean, median, and mode values were 
compared to find which measure would yield the most 
effective threshold for constant signals. Experimental  
results (see Section 8.2) identified the mean to be the best 
measure. Hence, the ‘spos’ label in the primitive layer  
was set to the absolute value of the gradient mean as:  
spos = abs(mean(gradm)stateaxis). 

8.1.3 Contextualisation 

Another important consideration lied in whether we should 
compute such thresholds for each separate axes and in some 
cases for each automata stare or not. As per our previous 
findings, a successful assembly can be characterised by 
select LLBs which capture that main components of the 
task. Similarly, it is the gradients found in the same 
automata states as the key LLBs that dominate the 
classifications. By contextualising the gradient classification 
in this selective way, a more effective calibration can be 
attained. We begin with the contextualisation of the contact 
thresholds and then proceed with the constant thresholds. 

The contact HLB is classified by two ‘CT’ LLBs in the 
snap automata state along the Fx and My axes. For this 
threshold, the ‘pimp’ value of the Fz axis was used to class 
the Fz and Fy axes and the ‘pimp’ value of the Fx axis was 
used for itself. The reason we separated the classification in 
this way was because the average value of gradients for the 
Fy and Fz axes was approximately 31 while that of Fx was 
81. The Fx axis in world coordinates is the axis in which an 
initial vertical contact takes place between the camera mold 
parts upon snapping and represents the hardest contact. For 
the moment axes, the ‘pimp’ value of My was used for itself 
and for Mx but not for Mz we used one-tenth of the value of 
My as the mean of the latter is an order-of-magnitude 
smaller. A summary of gradient contextualisation can be 
seen in Figure 13. Once all gradient thresholds could be 
derived for a given trial, those values would be used to test 
whether or not the RCBHT system would classify 
successful assemblies (as observed by appropriate snapping 
and mating) across a number of training assemblies. This 
part of the experimentation further allowed us to make 
observations that were included in our calibration approach. 
The training experiments are described in the following 
section. 
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8.2 Gradient calibration experiments 

In our experiments, five training and seven test assemblies 
were run under the HIRO experimental configuration. Each 
of the training and test trials were successful as supervised 
by an external user. In the training session, gradient 
thresholds were computed for each of the five trials. Then, 
each trial was assessed by each of the five different gradient 
sets of thresholds as part of the RCBHT system to determine 
whether the task was successful or not. In effect, 25 runs 
were attempted to assess the trial outcomes. As described in 
Rojas et al. (2012c, 2012d), the system considers the task to 
be successful if all key LLBs are present in the rotation, 
Snap, and Mating automata states. In this way, if the 
RCBHT declares the outcome to be successful we know that 
the gradient calibration was effective for that trial. 

The results were organised in a table as shown in the 
table of Figure 14 in order of increasing magnitude for the 
‘pimp’ threshold of the trials. From these experiments we 
can immediately note that it is those trials that yielded the 
contact thresholds of lowest magnitudes that yielded a 
successful outcome for other trials. This is so since the 
contact labels in trials with higher thresholds remain being 
contact labels in those trials. However, when the contact 
threshold of a trial is greater than a threshold in another 
trial, then the contacts there cannot be discerned and thus 
the RCBHT will not encounter contacts in the trial which 
are necessary in order for the Snap HLB to exist. The trend 
is that as the ‘pimp’ threshold increases per trial, the 
likelihood of assessing an outcome as success diminishes. 

There are a few exceptions to this trend and they are due 
to a number of different issues. In the table of Figure 14, 
note that entries can be described by the trial number of the 
row and the trial number of the column. For entry (trial 1, 
trial 3), a failure might have been expected, however as 
noted in Section 8.1.1, the ‘pimp’ value was scaled by a 
factor of 0.90 originally and later by a factor of 0.85. By 
lowering the scaling factor by 0.05 points, it allows some 
trials with higher contact thresholds to still identify contacts 
in trials with lower contact thresholds (in fact 2 out of 5 
trials behaved this way). 

For entry (trial 4, trial 2), another failure might have 
been expected. In this case, a contact LLB appeared in what 
may be considered the transitional period between states. 
That is, the ‘CT’ LLB started within the Snap state but 
ended within the MAT state. As described in Section 8.1, 
we did not consider these kinds of transitional behaviours. 
This detected CT state for trial 2, had a high enough value 
that trials 4 and 5 detected it (along with other key LLBs) 
and rendered the outcome as successful. Dealing with 
transitional information is an important aspect that needs to 
be addressed. It was first identified in Rojas et al. (2012c) 
and will be addressed in the near future. 

For entries (trial 2, trial 4) and (trial 5, trial 4), we have 
two failure assessments. The latter may have been expected 
but not the former. In fact, for entry (trial 5, trial 4) the 
scaling of the ‘pimp’ parameter would have allowed this 
trial to be assessed as successful, the problem lied 
elsewhere. No ‘FX’ behaviour was identified during the 
Mating automata state in the Fy and Fz axes as can be seen 
in Figure 15(a). The FT signal did indeed have a constant 
(‘k’) action at that stage, however, the latter had been 
absorbed by clean up process at the motion composition 
level. The latter used was absorbed into another action 
composition as part of a time context filtering after three 
clean up cycles. When, the filtering was reduced to two 
clean up cycles, the constant action appeared as well as the 
corresponding ‘FX’ LLB. This was not an isolated case as it 
also occurred in entry (trial 5, trial 4). 

8.2.1 Minimum gradient selection 

From the training experimentation, our calibration method 
was extended to consist of the following two aspects: 

a run at least five successful trial assemblies, compute 
their ‘pimp’ thresholds according to Section 8.1, and 
choose the lowest magnitude threshold of the trial set 

b utilise two clean up filtering cycles at the motion 
composition level rather than three to avoid excessive 
filtering. 

Figure 14 Five training trials are listed in order of increasing contact threshold value (see online version for colours) 

 
Notes: The green colour indicates the RCBHT assessed the task as successful. The orange colour indicates the RCBHT assessed 

the task as failure. 
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Figure 15 (a) Figure results used three clean up cycles as part of 
the filter at the motion composition level, the three 
cycles may filter important compositions at the 
second level of the system (b) Figure shows how 
when the clean up cycles are reduced to 2, the 
constant action (and correspondingly the ‘FX’ LLB) 
appears (see online version for colours) 

 
(a) 

 
(b) 

Figure 16 Seven test assemblies are listed with their contact 
threshold values (see online version for colours) 

 

This gradient calibration methodology was run on seven test 
assemblies. The set of assemblies is also of interest because 
two of those trials presented false-positive results when 
using the RCHBT in Rojas et al. (2012c) (predicting a false 
outcome when in fact the assembly had been successful). 
The false-positive results had been a result of erroneous 
interpretation during the first two layers of the system. A 
summary of the contact gradient thresholds for the test 
assemblies is shown in the figure of Table 16. The first trial 
in the set yielded the smallest gradient and was used to 
generate the gradient classification thresholds that would be 
used for all test assemblies. For comparison the RCBHT 
was run once on the set of assemblies with two clean-up 
cycles and again another set with three cycles for 
comparison. The results are shown in the table of Figure 17. 
The calibration method worked 100% of the time for the test 
assemblies set when using two clean up cycles suggesting to 

be an effective calibration method. It also worked 85.7% of 
the time when using three clean-up cycles. Figure 18(a) 
shows how an uncalibrated system yielded a false-positive 
result in that a successful assembly did not posses a ‘FX’ 
LLB in the rotation state of the My axes. In Figure 18(b) on 
the other hand, the calibrated method was able to 
disambiguate the FT signal to show the presence of ‘FX’ 
LLBs. For further exploration, we tested the gradient 
thresholds from trial 1 in the training set with the two  
false-positive trials in the training set. In this case, when 
using two clean-up cycles both false-positive trials were 
correctly assessed as successful. When using three clean up 
cycles, it could only correctly interpret one of the two trials. 

Figure 17 Our calibration method with 2 clean up cycles 
successfully interpreted all seven test assemblies  
(see online version for colours) 

 
Note: Including two assemblies that had yielded  

false-positive results when using un-calibrated 
gradient thresholds. 

Figure 18 (a) Figure shows how the RCBHT assigned a  
false-positive result by assigning a successive trial as 
failure (b) Figure shows the difference in results after 
using the calibration method with two clean up cycles 
(see online version for colours) 

 
(a) 

 
(b) 

8.3 Gradient calibration analysis 

An effective gradient calibration method was implemented 
for the RCBHT system. Statistical measures were used to 
derive contact and constant gradient thresholds in 
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contextually sensitive ways. During our experimentation we 
discovered that by running a number of training trials and 
selecting the gradient thresholds that belong to the trial 
whose contact threshold is the lowest, then the gradient 
calibration would be more effective. The experimentation 
also revealed a hidden fact prior to this work. That is, that 
when using three rounds of filtering at the motion 
composition level, some key motion composition actions are 
filtered away by the system. Two clean up cycles proved to 
be a very effective number for correctly assessing snap 
assembly outcomes. 

One of the keys in effectively calibrating gradients is 
understanding the assembly stages properly. The PA is 
useful in dividing the snap assembly into automata states 
that are consistent across trials. Each of those automata 
states have similar signal-patterns across trials for the six 
different force-torque axis. Furthermore, by having the 
RCBHT system abstract relative change across increasing 
layers of intuition, we can identify actions and behaviours 
that consistently appear across trials when the task is 
successful. Herein lies the significance of our framework; 
moreover, in this work’s context, the design of the gradient 
calibration method exploits such interpretations in order to 
identify what to look for in the FT signals and then 
implement statistical measures to identify relevant 
thresholds. Our calibration methods can be applied 
whenever a new task is implemented, whether a new robot 

or a new part. This is an important part of increasing the 
viability of this system as a way to automate assemblies. 

It is also worth mentioning, that the calibration method 
assumed a constant value for the ‘determination coefficient’ 
described in Section 6.1. The calibration should not be 
affected by different correlation values as long as they are 
constant throughout all trials. Another aspect worth noting 
is that the threshold values produced by the calibration 
method are tied to the FT transition values employed in our 
controller as part of the PA. If the FT transition conditions 
were to change, the RCBHT system would have to be 
recalibrated. Currently the FT transition values of the PA 
are also experimentally deduced. FT transition conditions in 
the PA can be found in Rojas et al. (2012a, 2012c, 2012d). 

9 Probabilistic RCBHT 

While the RCBHT detected key LLB presence for all FT 
axes to characterise a given desired HLB. However, a 
number of factors render the assessment uncertain: 

1 the assembly’s sensory data is noisy 

2 the RCBHT is limited to discriminate with certainty 
what LLBs are occurring 

3 key LLBs may only appear for a short amount of time 
during a state of the automata (see Figure 19). 

Figure 19 The RCBHT’s first three layers are presented in this figure (see online version for colours) 

 
Notes: The first (primitives) layer consists of linear fits shown by red line segments. The second (motion composition’s) layer are 

shown in black text. The third (low-level behaviours) layer are shown in red text labels. The coloured boxes represent the 
PA’s stages: rotation, snap, and mating. The figure shows the robot’s state throughout the task. 
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For this reason, Bayesian filtering was used to deal with 
uncertainty at the RCBHT’s third layer. BF’s have been 
typically used to localise mobile robots and, more recently, 
features in manipulation tasks (Platt et al., 2011; Meeussen 
et al., 2007). We have opted to implement a BF algorithm in 
the context of the RCBHT to deal with the aforementioned 
uncertainties while easing computational complexity and 
express the task’s high-level state as a probabilistic result. In 
our work, the BF will model LLBs as the task’s state. While 
LLBs are an indirect measurement of the state the selection 
reduces computational complexity and renders the BF as a 
viable approach. The latter will compute the posterior 
distribution (or belief) of a state xt at time t, conditioned on 
all past measurements z1:t and all past motion commands 
u1:t. The state belief is computed for each of the six LLBs 
presented in Section 6.3 at every time step for each FT axis. 

In BFs, a Markovian assumption is used which states 
that the knowledge about the current states and parameters 
suffices to make predictions about future states and 
measurements. The belief in a state xt at time t is represented 
as: bel(xt) = p(xt | z1:t). 

BFs use an update rule to recursively update the belief in 
the current state from the belief in the previous step: 

( ).tbel x  The algorithm’s first iteration requires an initial 
belief bel(x0) as a boundary condition. The update step can 
be better understood when decomposed in two steps: the 
prediction step and the correction step. 

9.1 The prediction step 

Predicts the state at time t by using a ‘system model’ in the 
previous time step t − 1. The system model for our discrete 
system is expressed as: 
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The system model is the sum of the products between state 
transition probabilities and priors probabilities for the 
previous state. While Bayesian filtering provides an optimal 
solution to estimating uncertainty, it does not explain how a 
probability model can be represented. 

In terms of representations, LLB prior probabilities 
P(llb) were defined as a function of their cumulative 
duration d with respect to the duration T of a single 
automata state s in a single FT axis a, such that at the 
completion of any automata state: P(llbs,a) = ds,a / Ts,a. 

With respect to the state transition model, a 6 × 6 matrix 
of transition-counts between the six LLBs was computed for 
each automata state for each FT axis yielding 18 matrices. 
State transition probabilities were computed as a fraction of 
counts per LLB with respect to the total number of 
transition counts per automata state per FT axes. Seven 
training assembly trials were used to compute average 

values for: prior and state transition probabilities for each 
FT axis and each automata state. 

The selection of cumulative durations as the measured 
feature in the pRCBHT reflects two aspects: 

1 the longer an LLB lasts during an automata state, the 
more likely it is to dominate the behaviour for that 
automata state 

2 due to disturbances or limitations in the RCBHT an 
LLB in an automata state may switch LLBs but return 
to the LLB of interest at a later time. 

9.2 The correction step 

The correction step updates the posterior by updating the 
prior belief (it corrects it) by incorporating the observed 
measurement, zt, likelihood’s and motor command’s ut such 
that: 

( ) ( ) ( )1: 1: 1 1: 1 1: 1|  ,   |  |  , ,t t t t t t t tP x z u P z x P x z uη− − −=  (17) 

where η is a normalisation factor that guarantees that the 
probability sum does not exceed 1. Measurements represent 
the cumulative duration feature explained for prior 
probabilities. In the measurement’s case, zt measures the 
cumulative duration upto that point in time for a given state 
s for a given force axis a. The measurement likelihood was 
computed using a Gaussian distribution where zt is the 
cumulative duration and xt is the llb for which we are 
computing the belief: 2ˆ( |  ) ( ; , ).t t t tP z x z x σ= N  The mean 
and the variance where calculated for each LLB for each 
automata state for each force axis by using seven trial 
assemblies. 

In effect, when the cumulative duration of the selected 
LLB approaches the mean cumulative duration (for any of 
the existing six LLBs) computed from the training data, the 
more likely it is to be the correct measurement. For 
example, compare the Fy axis for Figures 19 and 20. Notice, 
how in the former the FX LLB’s duration in the rotation 
state occupies almost the entire state. Then in the latter 
figure, the likelihood that FX is actually the measured LLB 
is 100% for most of the rotation state’s duration. The 
correction step and prediction step can be re-written in 
terms of a selected LLB llbi posterior (or belief) as: 
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Figure 20 shows the belief over all LLBs per FT axis per 
automata state for a test assembly task. Note the correlation 
between this belief plot and the sequence of LLBs in  
Figure 19. 
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Figure 20 LLB belief’s are computed for each of the six behaviours in the LLB layer of the RCBHT (see online version for colours) 

 
Notes: Each LLB’s belief was computed with a Bayesian that used the behaviour’s average cumulative duration. The belief 

represents the likelihood that a behaviour dominates the task at any moment in time. 
 
9.3 Probabilistic HLB 

As mentioned in Section 6.4, the HLB layer is a function of 
key selected LLBs (refer to Figure 9). Recall that Bayesian 
filtering was implemented to obtain a belief about the LLB 
states for each FT axis across the three automata states. The 
HLB layer then computes the joint probabilities of key 
LLBs that occur in all or any of the six FT axes. 

Figure 21 shows the HLB belief per each automata state. 
Five training trials were used to derive an average 
expectation of HLBs per automata state (thicker plot lines in 
magenta, blue, and black). 

9.4 Probabilistic SVL 

The snap verification layer (SVL) used a scheme in which 
three thresholds were generated to determine whether each 
automata state was successful. The thresholds work in a 
cumulative way such that the last threshold effectively 
determines whether the task was successful as a whole. The 
scheme in the SVL layer is designed to provide an intuitive 
assessment of the task’s outcome such that with the success 
of each subsequent HLB, the likelihood of success of task 
(and with it the thresholds) also grow (see to Figure 21 for 
reference). 

The SVL thresholds were derived by using a weighted 
average function over training data HLB beliefs. The 
weighted function divides each of the automata states HLB 
beliefs by the total automata state number. The algorithm 
then adds the maximum value of the previous HLB belief 
over a transition window to the next HLB belief. A 
transitional window is necessary given that during automata 
state transitions, LLB beliefs change and decrease in 
likelihood. Taking the maximum value over the transitional 
window ensures that the drop in probability does not hurt 
the expected (next HLB’s) likelihood (see dotted boxes in 
Figure 21). 

This algorithm shows increased likelihood success 
levels with each succeeding HLB state; i.e., if there was 
100% probability that each automata state succeeded, the 
SVL layer would show the likelihood of rotation at 1/3, 
Snap at 2/3, and Mat at 1. If, on the other hand, rotation 
succeeds but the others do not, the SVL layer would show 
an success belief at 1/3. 

Figure 21 presents three pieces of data: 

1 the HLB Beliefs for five successful training examples 

2 the averaged HLB belief values 

3 the weighted averaged values from which the SVL 
extracts threshold values at the automata state’s end. 
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Figure 21 The HLB and SVL layers: HLB belief per automata state is shown by three non-red lines averaged over five trials  
(see online version for colours) 

 
Notes: The magenta line shows the rotation belief, the blue line represents the Snap belief, and the black line represents the 

Mating belief. The weighted belief function used to extract success thresholds in the SVL layer is shown in red. The latter 
equals 1/3 of the value of the automata state averaged beliefs. The dotted green lines represent transitional windows used 
to compute success thresholds for each automata state. 

 
Note that near transition areas between belief states, belief 
state’s fluctuate drastically. Thus, a transition window is 
considered, in which the average of all belief state values is 
computed and used as the effective threshold. The rotation 
state success threshold is marked at about 27%, the Snap’s 
threshold is marked at about 51%, and the Mating’s 
threshold is marked at about 74%. 

9.5 pRCBHT results 

After the training phase, seven more test snap assembly 
trials were executed under the HIRO experimental 
configuration. For each of the seven trials, the SVL 
correctly assessed the outcome of all seven assembly tasks 
as a function of the representative LLB belief. Out of the 
seven assembly tasks five succeeded and two failed. 

9.6 pRCBHT experimental results analysis 

The pRCBHT effectively computed the state belief for 
LLBs and HLBs. The SVL derived-thresholds effectively 
classified the outcomes of test assembly trials in our work. 
In our previous work, the RCBHT declared a task successful 
if the presence of key LLBs existed, even if that presence 
was very small. By introducing Bayesian filtering, the 
system computed likelihoods for belief states based on 
Gaussian measurement models and averaged prior and 
transition probability models over history making the 
system more robust against the impact of noisy FT signals 
and the presence of short-lived LLBs. 

The probabilistic outcome also yields more intuitive and 
granular state awareness than before. The LLB belief state 
conveys which behaviour dominates a task at a specific time 
in a given automata state in a given axis. This level of 

granularity in conjunction with the SVL scheme, can allow 
us to classify defective assemblies contextualised by 
automata state and force axis, and fix them by issuing 
corrective commands as feedback to the controller. This will 
effectively close the loop between state estimation and 
corrective motion enabling snap sensing for parts of 
complex geometry. 

10 Preliminary Assembly failure analysis 

The failure analysis that we have conducted concerns 
assemblies that succeeded in the Approach and rotation 
stages of the PA but failed at the Insertion point. That is to 
say, we have not focused on Assemblies that fail either 
initially in their approach and initial contact between parts, 
or during the rotation stage. Our failure analysis 
contemplates both experimental configurations introduced 
in this work. 

Successful snap assemblies can be understood by 
extracting key LLBs. These LLBs, when studied 
contextually, that is, by studying what LLBs occur  
in what automata states of the PA and in what force  
axes we are able to identify their high-level representation. 
Figure 9 summarises such LLBs for both experimental 
configurations. As noted in Section 4.2.2, the selection  
of key LLBs also depends on our selection of task  
frames and controller templates. Yet in both experimental 
configurations, we note that the presence of a contact (‘CT’) 
LLB as part of the Insertion state in the force axis direction 
which corresponds to the vertical insertion direction  
(that is Fz for the two-snap part configuration and Fx for the 
four-snap part configuration) is necessary for the insertion 
to succeed. 
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It is not surprising then to find that all failed tasks were 
unable to experience a contact behaviour during the 
insertion stage in the aforementioned vertical direction. 
Additionally, all failed tasks also showed that whenever a 
CT LLB was missing from the vertical direction of motion, 
then an undesired CT, SH, OR PS and PL set of LLBs were 
present in the perpendicular direction of motion (that is the 
direction in which the robot moves forward to approach the 
mating part) at two stages: 

1 the insertion stage 

2 the rotation/alignment stage. 

That is to say, that we can directly correlate the absence of a 
contact in the vertical insertion direction, to unstable lateral 
behaviours taking place during and prior to the insertion 
phase of the snap approach. For a visualisation of this 
dynamic see Figure 22. Another trend, though not with as 
strong a correlation, is that whenever there is instability in 
the lateral axis (say Fx), there will also be instability in the 
moment axis the perpendicularly bisects the force axis and 
that is in direction of the lateral motion (say My). 

We can in a preliminary fashion indicate that if there is a 
presence of CT LLBs in the rotation/alignment/insertion 
stages of the lateral motion, that there is instability in the 
system. This instability, we infer, is most likely due to a 
problem in the initial docking. Further experimentation will 
be necessary to determine whether we can correct this 
motion in-situ or if it would be better to withdraw the 

approaching snap part entirely and try to reapproach the part 
again. 

11 Discussion 

With regards to the PA, the authors believe the latter was 
effective in exploiting the built-in mechanical design typical 
of snap parts to constrain the motion of the snap assembly 
and optimise entry points. By pivoting about the locking 
dock, better alignment existed not only at the initial contact 
point but along the camera parts’ interior wall linings. 
Furthermore, due to the generation of similarly-patterned 
signals across trials, a small-set of gradient classification 
categories were sufficient to interpret the FT signals through 
increasingly abstract layers revealing the robot state 
throughout the task in human-apropos behaviours. 
Uncertainty in the signal processing was addressed by 
introducing Bayesian filtering and yielding belief-states at 
the LLB, HLB, and SVL level. By computed the likelihoods 
for belief states, more intuitive and granular state awareness 
was achieved as compared to the standard RCBHT system. 
This is significant because we can understand which 
behaviours dominate at any point in time and in any of the 
axes. This in turn allows us to better classify errors in the 
assembly process and generate more granular strategies for 
failure recovery. 

Figure 22 This trial carried out with the HIRO robot and a 4-snap part shows a common failure characteristics when a contact behaviour 
cannot be established in Fz’s insertion state (see online version for colours) 

 
Note: Labels indicate areas of interest in understanding failure phenomena. 
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The originality of our work is multi-faceted. The first aspect 
is identifying an assembly control strategy that can be 
applied to the cantilever-snap parts and that it can generalise 
to parts of varying geometrical complexity. It does so by 
working in concert with parallel controller templates that are 
also designed to optimally but flexibly meet control 
requirements for each state. Excellent work has been done 
in generating adaptable strategies in the industrial setting 
(Sayler and Dillmann, 2011), though these strategies have 
not extended for snap assembly procedures. With regards to 
the RCBHT system, is able to effectively abstract 
increasingly intuitive behaviour primarily due to two 
aspects: 

1 Considering the classification of gradients not in an 
absolute way but in a relative way. Hypothesising that 
higher level behaviour require not exact understanding 
of change but that relative classifications are enough to 
encode behaviour. 

2 That behaviour encoding requires appropriate 
contextualisation. 

Contextualisation is present in multiple forms. We 
distinguish data across force axes, automata states, and level 
of abstraction in which data occurs, even in the way we do 
refinement cycles. There have been others works that have 
tried to understand change in FT signals (McCarragher, 
1994; Eberman and Salisbury, 1994), but these have been 
limited to regular peg-in-hole assembly tasks. They also 
have not developed a framework upon which their 
application can extend to other configurations. In this 
context, others have also sought to build contact-state 
graphs to understand the robot state (Kwak et al., 2011; 
Meeussen et al., 2007). However, these methods become 
unwieldy with geometrical complexity as the number of 
contact possibilities grows exponentially. Additionally, it 
was important to identify sources of uncertainty in the 
RCBHT system and addressing them by introducing 
Bayesian calculus. Some researchers have applied Particle 
Filters to perform the estimation of contact formation as part 
of understanding robotic state through contact-state graphs 
in compliant motion tasks (Meeussen et al., 2007). In our 
work, by identifying Gaussian measurement models and 
prior and transition probabilities, we obtain high-level belief 
states from the snap assembly task through the RCHBT 
system. The latter is significant as they help us to 
understand which of all LLBs is dominating the task in a 
given force axis at a given point in time. This result will 
play an important role in helping us identify more precisely 
common failure patterns and generate corrective strategies 
to render the snap assemblies more robust. Our work in 
failure detection is preliminary but gives insight into the 
nature of failure dynamics. More statistically significant 
trials need to be systematically carried out to better 
characterise failure detection in its multiple forms and then 
devise systematic ways in which those failures can be 
corrected. 
 

The use of simulation pose limitations to our study. 
However, the working principles of our framework should 
generalise well to physical experimentation as the only 
source of variation is the magnitude and form of FT signals. 
The gradient calibration process should also help to mitigate 
the effects of working with a real system instead of a 
simulated one. Limitations in the RCBHT are also 
concerned with other parametric values that have been 
chose such as: the determination coefficient threshold in the 
linear fit; and refinement phase values such as: the gradient 
margin values, time durations, amplitude values, and 
average value margins. Changes in these values could alter 
the verification result. There is still a need to implement 
methods that could extract these properties autonomously. 
Other limitations became apparent from our work with 
Bayesian filtering. A weakness in our system lies in that the 
probability models for priors, transition models and the 
measurement model’s Gaussian noise, depend on training 
data examples. In our work we used seven separate data 
samples to train and to test the system. The probability 
models (priors and transitions) can be improved by 
increasing the population size. Adjusting these values over 
time based on experience should improve statistical 
accuracy. Another aspect that we have identified is that we 
normally assume transitions in automata states happen 
instantaneously and not progressively. This assumption 
prevents us from addressing changing behaviours (gradient 
values, LLB presence, and LLB likelihoods) near transition 
windows. This phenomena requires that we address 
transitions as their own automata states and that we study 
how to interpret transition data to better understand robot 
state and error correction. Our current failure detection 
analysis is preliminary and more exhaustive and systematic 
testing is necessary to quantitatively understand failure 
patterns in cantilever-snap assemblies. 

11.1 Future work 

In terms of future work, we are working to implement the 
physical and online version of our system. This is 
imperative to corroborate our findings thus far. 
Additionally, there are number of pressing developments 
that we would like to implement. One of them is to develop 
autonomous parts localisation. By enabling the robot to 
identify the position of parts, the snap assembly can be 
executed completely autonomously. As mentioned in the 
Discussion, we also are looking towards systematically 
characterising assembly failure. Once all error possibilities 
are characterised, a system for corrective or regenerative 
motions can be designed and in this way close the loop 
between identifying the robot state and correcting failure-
prone motions. This would enable us to achieve full ‘snap 
sensing’ functionality. Furthermore, once snap sensing is in 
place, we would also like to work towards executing 
desnapping behaviour and two-arm snap assemblies. 
Beyond this, there are many small improvements that can be 
included in our system as mentioned in Section 11. 
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12 Conclusions 

This work presents undergoing efforts to develop a 
framework for Snap Sensing. Snap Sensing is related to the 
execution of snap assemblies and is defined as the ability for 
a robot to discern its state during a task and wherever 
necessary execute corrective motions. To this end we have 
integrated a framework that consists of a control strategy 
that generalises to cantilever snap parts of varying 
geometrical complexity and by virtue of its motion 
constraining design eases the interpretation of FT data. This 
strategy works in concert with a flexible control framework 
that supports the generalisation of the strategy. Furthermore, 
we have integrated a robot state estimation and snap 
assembly verification method. The latter encodes gradient 
relative-change in FT data and abstracts this information 
contextually to produce high-level intuitive behaviours that 
are used in turn to determine whether an assembly is 
successful or not. The robot state verification method has 
been made more robust by including gradient optimisation 
procedures and Bayesian filtering into the signal processing. 
The latter yields belief states for higher level behaviours 
which are used to predict the success likelihood of an 
assembly. Preliminary assembly failure characterisation was 
conducted and provided insight into assembly failure 
dynamics’ for cantilever-snap parts. Ongoing work seeks 
not only to acquire the snap assembly’s robot state but also 
to enable the identification of failure-prone actions to in turn 
generate corrective motions. 
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Notes 
1 In actuality, we do not directly assess the approach stage 

given that there are no contact forces at this stage. But if the 
rotation analysis is successful we assume that the approach 
was too. 

Appendix 

Abbreviations in this work are found in the table below: 

PA Pivot approach 
MA-FP Male-active/female-passive 
FA-MP Female-active/male-passive 

Systems 

RCBHT Relative change-based hierarchical 
taxonomy 

MC Motion composition 
LLB Low-level behaviour 
HLB High-level behaviour 

Layers 

SVL Snap verification layer 
PS Push 
PL Pull 
CT Contact 
FX Fixed 
AL Alignment 
SH Shift 

LLBs 

N Noise 
pRCBHT Probabilistic RCBHT Bayesian 

BF Bayesian filter 

 


