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Abstract— This paper presents a novel optimization method
for generating persistently exciting trajectories for inertial
parameters identification of a robot. The exciting performance
of the trajectories is usually evaluated by the condition number
of the regressor matrix, which appears in the linear regression
model for identification. In this paper, the efficient formulation
is presented to directly compute the gradient of the condition
number with respect to joint trajectory parameters, by deriving
the derivative of the singular values and regressor matrices.
Direct gradient computation can enhance computational perfor-
mance of optimization, which is essential for large DOF systems
under many physical consistent conditions such as humanoid
robots. The proposed method is validated by generating several
trajectories for the humanoid robot HRP-4.

I. INTRODUCTION

Owing to the recent technical advancement of humanoid
robots, they are now expected to be applied to various
fields like disaster response, human entertainment, and as
a scientific tool for studying human behaviors. Such appli-
cations usually require the development of efficient whole
body controllers or accurate simulators for the validation
of motions. The knowledge about the system dynamics is
essential in order to meet such requirements.

When modeling the dynamics of a robot, its geometric and
inertial parameters need to be known. The geometric parame-
ters such as joint locations and orientations are available from
manufacturers, because they are usually determined when
designing a robot. While the inertial parameters, typically
mass, center of mass, and inertia tensors of each link can
be estimated from CAD data, they are often inaccurate and
subject to changes. It is difficult to determine the physical
properties of the electronic cables or components inside a
mechanical gear, and the modifications of hardware usually
affect those parameters. For this reason, the process of
identifying inertial parameters is crucial for obtaining an
accurate dynamic model.

Methodologies for identifying inertial parameters of a
robot has been extensively studied [1]. Though system iden-
tification itself is widely studied in many other fields, in
robotics, it utilizes the linearity of inertial parameters in the
equation of motion of a robot [2], [3]. Thanks to this conve-
nient property, identification methods have been developed

1K. Ayusawa A. Rioux and E. Yoshida are with CNRS-AIST JRL (Joint
Robotics Laboratory), UMI13218/RL Intelligent Systems Research Institute,
National Institute of Advanced Industrial Science and Technology (IS-
AIST), Japan. {k.ayusawa, e.yoshida}@aist.go.jp

2G. Venture is with Department of Mechanical Systems Engineering,
Graduate School of Engineering, Tokyo University of Agriculture and
Technology.

3M. Gautier is with University of Nantes/LS2N, France.

for many robotics applications [4], [5], [6]. More recently,
identification for humanoid systems has attracted attention,
and some methods specialized for humanoid systems have
also been reported [7], [8], [9].

One of the most important processes for identification
is how to generate appropriate joint trajectories, which are
called persistently exciting trajectories (PE trajectories). Effi-
cient techniques based on optimization to find the trajectories
for robotics manipulators are detailed in [10], [11], [12],
[13]. Yet, humanoid robots differ in several points from
fixed manipulator robots. The most critical difference is the
inexistence of a fixed base in humanoid robots (i.e., they
have a floating base). It requires additional consideration
about balancing conditions, even before identification. While
the recent optimization-based approaches are expected to be
useful for handling such constraints [14], the large number
of degree of freedom (DOF) also leads to computational
complexity. For those reasons, popular approaches [15], [16]
are such that, at first, several physically possible motions are
generated in advance, and then, the optimal set of motions
are selected from those candidates. Though it is simple and
convenient, many motion candidates need to be generated
without guarantee to obtain optimal PE trajectories. Accord-
ingly, an efficient method to find the optimal PE trajectories
is needed.

In this paper, we propose a novel efficient optimization
algorithm to find PE trajectories. The highlighted feature
of our method is the analytical formulation of the gradient
of the particular cost function in our optimization problem.
The condition number of the regressor matrix is utilized as
the cost function of optimization. We formulate the gradient
computation of the condition number with respect to the
joint trajectory parameters. It enables direct optimization of
trajectory under several constraints such that joint limits, self-
collisions, and balancing based on a-priori CAD data. We
will demonstrate the proposed method is useful especially
when generating PE trajectories for humanoid robots through
experiments with the human-size humanoid HRP-4.

II. BACKGROUND OF IDENTIFICATION

This section presents some preliminaries for identification
of a robot and the related works.

The equations of motion of the robot can be transformed
into the linear form with respect to its inertial parameters
[2], [3]:

YYY (qqq, q̇qq, q̈qq)φφφ = τττ (1)



where vector φφφ indicates the inertial parameters of the robot,
vector τττ means the joint torques, and matrix YYY is called
a regressor matrix which is computed from generalized
coordinates qqq and their derivatives q̇qq and q̈qq,

It is also well known that vector φφφ is redundant in order
to construct the equations of motion; all the parameters of
φφφ usually cannot be identified from Eq.(1). The minimum
set which represents the equations of motion is called base
parameters [17], [18]. By utilizing base parameters, Eq.(1)
can be transformed into the followings:

YYY φφφ = YYY Bφφφ B � (YYY XXX)φφφ B = τττ (2)

where φφφ B is the vector of base parameters, and XXX is the com-
position matrix to reconstruct new regressor YYY B from YYY [9].
The structure of XXX depends on the kinematic configuration
of the joints. Due to the linear characteristics of Eq.(2), the
parameters of φφφ B can be identified by a linear least squares
method [1]. In order to identify φφφ B, the regressor matrices
and the joint torques of Eq.(2) need to be collected at several
time instances: t = t1, t2, · · · tT :

ŶYY Bφφφ B �

⎡⎢⎣YYY B
(1)

...
YYY B

(T )

⎤⎥⎦φφφ B = τ̂ττ �

⎡⎢⎣τττ(1)
...

τττ(T )

⎤⎥⎦ (3)

where ‘∗(t)’ is variable ‘∗’ at time instance t.
The most fundamental formula in order to identify φφφ B is

written as follows:

φφφ re f
B = (ŶYY B

TŶYY B)
−1ŶYY B

T τ̂ττ (4)

where φφφ re f
B is the solution of the least squares.

As can be seen from Eq.(4), the performance of iden-
tification depends on the matrix characteristics of ŶYY B; the
parameters of φφφ B is difficult to be identified when matrix

ŶYY
T
BŶYY B is almost singular. Matrix ŶYY B is the functional matrix

with respect to the trajectories of qqq, q̇qq, and q̈qq. In order
to enhance the accuracy of identification, it is important
to design the appropriate trajectories. Such trajectories are
called persistently exciting trajectories (PE trajectories) [10].
The following criteria is often used in order to find PE
trajectories:

cond (ŶYY B)�
σmax

σmin
(5)

where σmax and σmin are the maximum and minimum singu-
lar values; therefore, Eq.(5) computes the condition number
of matrix ŶYY B. When the condition number is close to 1, the
performance of the trajectory is considered to be good. For
the convenience of explanation, let us simplify the notation
of the regressor as follows:

CCC � ŶYY B (6)

There are several methodologies to find trajectories to
minimize the condition number of Eq.(5). In order to re-
duce computational complexity, the joint trajectories are
parameterized by utilizing a polynomial interpolation [10], a
Fourier series [12], [19], B-splines [13], [14], and so on. The

constraints like the limits of joint angle range, velocities, and
accelerations are usually considered at the same time. In the
case of humanoid identification, however, there are additional
constraints about the balancing problem and self-collision
avoidance. The large number of DOF also makes it difficult
to optimize the parameters by normal nonlinear optimization
techniques. Therefore, problem Eq.(5) is usually replaced
with a simple case like a static one [14] or the selection
problem [15], [16] which finds the optimal set from the
candidates of the motions that are generated in advance.
Efficient optimization techniques usually require analytical
gradient computation of the cost function. To the best of our
knowledge, there has been no analytical formulation about
the gradient of the condition number in Eq.(5), which is
detailed in the next section.

III. DIRECT GRADIENT COMPUTATION FOR PE
TRAJECTORIES

This section introduces how to compute the gradient of
the cost function in the following optimization problem:

min
∀t,qqq(t),q̇qq(t),q̈qq(t)

c � cond(CCC) (7)

The important matrix derivatives are derived in section III-
A, the structure of the regressor matrix is shown in section
III-B, and the derivative of the regressor matrix with respect
to the generalized coordinates is formulated in section III-C.
Finally, the gradient computation of Eq.(7) is presented in
section III-D.

As this section contains several equations used only for
convenience’s sake from mathematical point of view, let us
first summarize the computation flow of the gradient. The
listed equations are later shown in this section.

1) Compute concatenated regressor CCC which is defined in
Eq.(41).

2) Compute ZZZ(t) : the partial derivative of the condition
number with respect to the regressor at time instance
t according to Eq.(46).

3) Compute (ZZZi, j : ∂YYY i, j
(t)/∂xxx(t)) for all i and j: the

partial derivative w.r.t. joint angles, velocities and
accelerations. It can be computed by utilizing Eq.(25),
Eq.(28), Eq.(30), Eq.(36) and Eq.(40).

4) Compute the final gradient by Eq.(47)

The overview of the whole flow of the gradient computation
is also shown in Fig.1.

A. Direct derivative computation of condition number

In this subsection, matrix CCC is treated as m×n real matrix.
The singular value decomposition of CCC can be computed as
follows:

CCC =UUUΣΣΣVVV T (8)

where UUU and VVV are unitary matrices, and ΣΣΣ is a rectangular
diagonal matrix. The variation of CCC is represented as follows:

∂CCC = ∂UUUΣΣΣVVV T +UUU∂ΣΣΣVVV T +UUUΣΣΣ∂VVV T (9)
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Fig. 1. Overview of gradient computation

Let us multiply by UUUT from the left of Eq.(8) and VVV from
the right, the following holds:

∂ΣΣΣ =UUUT ∂CCCVVV −UUUT ∂UUUΣΣΣ−ΣΣΣ∂VVV TVVV (10)

As equation UUUUUUT = III holds, we have:

∂UUUUUUT =−UUU∂UUUT (11)

As can be seen from Eq.(11), matrix ∂UUUUUUT is a skew
symmetric matrix:

(UUUT ∂UUU)(k,k) = 0 (1 ≤ k ≤ m) (12)

where ‘∗(q,r)’ means the element in the q-th row and r-th
column of matrix ‘∗∗∗’. Let us also define ‘∗(s)’ as s-th element
of vector ‘∗∗∗’. As ΣΣΣ is a m× n rectangular diagonal matrix,
the following equation holds:

(UUUT ∂UUUΣΣΣ)(i,i) = 0 (1 ≤ i ≤ min(m,n)) (13)

The same discussion can be applied to the case of matrix VVV ,
and we can also get:

(ΣΣΣ∂VVV TVVV )(i,i) = 0 (1 ≤ i ≤ min(m,n)) (14)

From Eq.(10), Eq.(13), and Eq.(14), we can obtain:

∂σi � ∂ΣΣΣ(i,i) = (UUUT ∂CCCVVV )(i,i) = uuui
T (∂CCC)vvvi (15)

where σi is i-th singular value of matrix CCC, and uuui and vvvi are
the corresponding singular vectors. The partial derivative of
σi with respect to CCC is computed as:

∂σi

∂CCC
= vvviuuui

T

(
∂σi

∂C(p,q)
= vi(q)ui(p)

)
(16)

Finally, by utilizing Eq.(16), the partial derivative of condi-
tion number of matrix CCC with respect to CCC can be computed
as follows:

∂ cond(CCC)

∂CCC
= C (CCC)� 1

σmin
vvvmaxuuumax

T − σmax

σ2
min

vvvminuuumin
T (17)

where ‘∗∗∗max’ and ‘∗∗∗min’ are the maximum and minimum
singular vectors.

It should be noted that, in actual implementations, Eq.(16)
and Eq.(17) are not symbolic derivatives; uuui, vvvi, and σi are

usually computed by the numerical singular value decompo-
sition. The singular values are usually listed in descending
order; if i > j, then σi ≥ σ j. However, UUU and VVV are
determined according to a choice of bases. For example,
when ∃ i( �= j) σi = σ j, corresponding uuu and vvv are arbitrary
and depend on the implementation of the numerical decom-
position. Therefore, the derivatives in Eq.(16) and Eq.(17)
are computed according to the same rule of choosing the
bases.

When computing Eq.(16) and Eq.(17), bases uuui or vvvi

(i > min(m,n)) are not required. It leads that, in the actual
implementation, the full decomposition is unnecessary; a
reduced version of the singular value decomposition should
be computed instead: for example, if m < n, CCC = UUUΣΣΣ∗VVV ∗T ,
where ΣΣΣ∗ is m×m diagonal and VVV ∗ is m× n and contains
the first m columns of VVV .

Though Eq.(7) is fundamental, other efficent criteria are
also proposed [20]. Since they also use the singular values of
CCC, its derivative can be also computed by utilizing Eq.(16).

B. Structure of regressor matrix

Let n be the number of joints. Then regressor YYY is
structured as follows [3], [1]:

YYY �

⎡⎢⎣YYY 1,1 · · · YYY n,1
...

. . .
...

YYY 1,n · · · YYY n,n

⎤⎥⎦ (18)

Each block matrix of YYY is formulated as follows:

YYY i, j � si, jKKKiAAAi
−1AAA jYYY j (19)

Scalar value si, j in Eq.(19) is a boolean value in order
to represent the connectivity of the links in the system. In
the formulation of this paper, let the multi-body system be
considered as an open kinematic tree:

sssi, j �
{

1 ( j ∈ Li)
0 ( j �∈ Li)

(20)

where Li indicates the index set of the joints which are
included in the kinematic sub-tree starting from joint i.

Matrix KKKi in Eq.(19) is the orthogonal projection matrix
which maps the 6-axis forces acting on the joint coordinate
into the joint torque. For example, if joint i is a rotational
joint, matrix KKKi is written as follows:

KKKi �
[
0003

T eeei
T
]

(21)

where eeei is the joint axis vector represented in the joint
coordinate. Matrix KKKi is usually constant and the example
of other cases are shown, for example, in [9].

Matrix AAAi in Eq.(19) denotes the coordinate transformation
matrix of 6-axis forces and can be represented as:

AAAi � A (pppi,RRRi) (22)

where pppi and RRRi are the position vector and the orientation
matrix of link i. The functional matrix A is detailed in
Appendix.



Sub-regressor matrix YYY j in Eq.(19) is formulated as fol-
lows:

YYY j � Y ( j p̈pp j,
jω̇ωω j,

jωωω j)� Y (RRR j
T p̈pp j,RRR j

T ω̇ωω j,RRR j
T ωωω j) (23)

where ωωω j is the vector about the angular velocity of link
j, and notation ‘ j∗’ means ‘RRR j

T∗’ which indicates the
local representation with respect to the joint coordinate. The
functional matrix Y is also detailed in Appendix.

C. Analytical derivative of regressor matrix

We define new vectors by concatenating the following
ones for convenience of explanation.

xxx �

⎡⎣qqq
q̇qq
q̈qq

⎤⎦ , ξξξ j �

⎡⎣ p̈pp j
ω̇ωω j

ωωω j

⎤⎦ , jξξξ j �

⎡⎣ j p̈pp j
jω̇ωω j
jωωω j

⎤⎦ (24)

As mentioned in Eq.(23), vector jξξξ j indicates the local
coordinate representation of ξξξ j.

Now let us consider the derivative of the Frobenius inner
product between the following two matrices: ZZZi, j :YYY i, j, where
operation ‘:’ computes the Frobenius inner product (i.e. ZZZi, j :
YYY i, j = trace(ZZZi, j

TYYY i, j)). The Frobenius inner products are
used for multiplying several partial derivatives with respect
to matrices. Let ZZZi, j be the matrix whose size is equal to
YYY i, j. Though ZZZi, j is defined in detail later, let us assume that
ZZZi, j is an arbitrary constant matrix in this subsection.

Then, the partial derivative of the inner product is com-
puted as follows:

ZZZi, j : ∂YYY i, j

∂xxx
=

ZZZi, j : ∂YYY i, j

∂ jξξξ j

∂ jξξξ j

∂xxx
+∑

k

ZZZi, j :∂YYY i, j

∂AAAk
T : ∂AAAk

∂xxx
(25)

The computation of each component in Eq.(25) is shown
in this subsection.

1) Computation of (ZZZi, j : ∂YYY i, j)/∂ jξξξ j :
Let us transform (ZZZi, j : ∂YYY i, j)/∂ jξξξ j by utilizing Eq.(19):

ZZZi, j : ∂YYY i, j

∂ jξξξ j
=

(
BBBi, j

T ZZZi, j
)

: ∂YYY j

∂ jξξξ j
(26)

BBBi, j � si, jKKKiAAAi
−1AAA j (27)

Since BBBi, j is independent from jξξξ j, Eq.(27) can be trans-
formed by using Eq.(23) as follows:

ZZZi, j : ∂YYY i, j

∂ jξξξ j
= gggi, j(ZZZi, j)�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(BBBi, j
T ZZZi, j) : Y A(eeex)

(BBBi, j
T ZZZi, j) : Y A(eeey)

(BBBi, j
T ZZZi, j) : Y A(eeez)

(BBBi, j
T ZZZi, j) : Y B(eeex)

(BBBi, j
T ZZZi, j) : Y B(eeey)

(BBBi, j
T ZZZi, j) : Y B(eeez)

(BBBi, j
T ZZZi, j) : Y C(eeex,

jwww j)
(BBBi, j

T ZZZi, j) : Y C(eeey,
jwww j)

(BBBi, j
T ZZZi, j) : Y C(eeez,

jwww j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(28)

where III3 = [eeex eeey eeez] is an 3×3 identity matrix, and func-
tional matrices Y A, Y B and Y C are defined in Appendix.

2) Computation of ∂ jξξξ j/∂xxx:
The relation between ξξξ j and jξξξ j is written as follows:

ξξξ j = R̂RR j
jξξξ j, R̂RR j �

⎡⎣ RRR j OOO3×3 OOO3×3

OOO3×3 RRR j OOO3×3

OOO3×3 OOO3×3 RRR j

⎤⎦ (29)

Then the partial derivative of ξξξ j with respect to xxx can be
computed as follows:

∂ jξξξ j

∂xxx
= R̂RR j

∂ξξξ j

∂xxx
+

⎡⎣ [ p̈pp j×]JJJW j

[ω̇ωω j×]JJJW j

[ωωω j×]JJJW j

⎤⎦ (30)

JJJW j �
[
OOO3 III3

]
JJJB j (31)

where JJJB j is the basic Jacobian matrix [21] of link j; the
following relationship holds: [ṗpp j

T ωωω j
T ]T = JJJB jq̇qq.

Partial derivative ∂ξξξ j/∂xxx consists of the Jacobian matrices
of the angular velocity and the linear and angular acceleration
of link i with respect to xxx. The computation method of those
Jacobian matrices can be found in [22].

3) Computation of (ZZZi, j : ∂YYY i, j)/∂AAAk :
Since YYY i, j contains AAAi and AAA j, let us compute the partial

derivative of the inner product with respect to the two
respectively:

ZZZi, j : ∂YYY i, j

∂AAA j
=

GGGAi, j : ∂AAA j

∂AAA j
= GGGAi, j

T (32)

ZZZi, j : ∂YYY i, j

∂AAAi
=

ĜGGAi, j : ∂AAAi
−1

∂AAAi
= AAA j

−1ĜGGAi, j
T AAA j

−1

(33)

where GGGAi, j and ĜGGAi, j are defined as follows:

GGGAi, j � si, j(KKKiAAAi
−1)T ZZZi, j(YYY j)

T (34)

ĜGGAi, j � si, j(KKKi)
T ZZZi, j(AAA jYYY j)

T (35)

Then the partial derivative of AAAk for arbitrary index k can
be written as:

ZZZi, j : ∂YYY i, j

∂AAAk
= δ j,kGGGAi, j

T −δi,kAAA j
−1ĜGGAi, j

T AAA j
−1 (36)

where δq,r is a Kronecker delta.
4) Computation of (∗ : ∂AAAi, j)/∂xxx :
Let us define matrix GGGi, j whose size is equal to AAAi, j and

compute the following inner product:

GGGi, j : ∂AAAk

∂xxx
= ∑

p
eeep

T GGGi, j
T ∂ (AAAkeeep)

∂xxx
(37)

Before the further computation, we assume the following
equation:

bbb = AAAkaaa (38)

where aaa is an arbitrary constant vector. Then the partial
derivative of bbb with respect to xxx is computed as follows:

∂bbb
∂xxx

= AAAk[(−aaa)•̂]A (0003,RRRk
−1)JJJBk (39)

From Eq.(37) and Eq.(39), we have:

GGGi, j : ∂AAAk

∂xxx
= ∑

p
eeep

T GGGi, j
T AAAk[−eeep•̂]A (0003,RRRk

−1)JJJBk (40)



D. Gradient computation

The measurement data used in the identification is often
obtained through several experimental trials. Though matrix
CCC was defined as Eq.(6) in section II, let us redefine CCC as
follows:

CCC �
[
CCC0

T ŶYY B
T
]T

(41)

where CCC0 is an m1×n arbitrary matrix, and let us consider ŶYY B

as a m2T ×n matrix. For example, when some measurement
data were already available for the identification, CCC0 corre-
sponds to the matrix which is computed from the data. The
regressor at t-th time instance can be extracted as follows:

YYY (t)
B = SSS(t)CCC (42)

SSS(t) �
[
OOOm2×m1 ŜSS

(t,1) · · · ŜSS
(t,l) · · ·

]
(43)

ŜSS
(t,l) � δt,lEEEm2×m2 (44)

The goal is to compute the gradient of cost function c with
respect to xxx(t). Before doing this, let us compute the gradient
with respect to normal regressor YYY (t) in Eq.(2) as follows:

∂c

∂YYY (t)
=

∂c
∂CCCT : ∂CCC

∂YYY (t)
= XXXC (CCC)SSS(t)T (45)

Then we define the following matrix:

ZZZ(t) �

⎡⎢⎣ZZZ1,1
(t) · · · ZZZn,1

(t)

...
. . .

...
ZZZ1,n

(t) · · · ZZZn,n
(t)

⎤⎥⎦� XXXC (CCC)SSS(t)T (46)

Block matrix ZZZi, j corresponds to the matrix which has been
already shown in the previous subsection.

Finally, the gradient vector with respect to xxx(t) can be
computed as:

∂c

∂xxx(t)
= ∑

i
∑

j

ZZZi, j : ∂YYY i, j
(t)

∂xxx(t)
(47)

IV. OPTIMIZATION RESULTS

In this section, the proposed method has been tested on
a humanoid robot and some results are presented, after
showing the setting of our optimization problem.

A. Setting of optimization problem

1) Trajectory parameterization: In the previous section,
all the generalized coordinates and their derivatives are
considered as the variables in the optimization problem of
Eq.(7). In order to reduce computational cost or to smooth
the trajectories, they are usually parameterized by using
functional trajectory representation.

xxx(t) = f (ααα) (48)

where ααα is the set of the parameters used in the functional
trajectory.

When using trajectory representation with Eq.(48), gradi-
ent Eq.(47) can be transformed as follows:

∂c
∂ααα

= ∑
t

∑
i

∑
j

∂
(

ZZZi, j : YYY i, j
(t)
)

∂xxx(t)
∂xxx(t)

∂ααα
(49)

In this paper, we utilized a Fourier series in order to
parameterize the joint trajectory [12], [19]; coordinate qqq(t)

is represented as follows:

q( j)
(t) =

N

∑
k=1

(a j,k sin(kωt)+b j,k cos(kωt))+q0 j (50)

We can easily obtain q̇qq(t) and q̈qq(t) by differentiating Eq.(50).
Let us assume that N, ωi and time instances t = t1, t2, · · ·

are constant. In this case, parameter ααα is equal to the set
of a j,k, b j,k, and q0 j for all j and k. Since Eq.(50) and
its derivatives are linear with respect to a j,k, b j,k, and q0 j,

each component of ∂xxx(t)

∂ααα can be simply obtained from their
coefficient values.

2) Constraints: When solving Eq.(7), the following con-
ditions about the limits of joint angles and their derivatives:

xxxmin ≤ xxx(t) ≤ xxxmax (51)

where vectors xxxmin and xxxmax mean the minimum or the
maximum values respectively.

We also assume the following limitation of the center of
total mass, in order to keep the balance of the robot:

pppest
c

(t) ⊂ P (52)

where pppest
c is the estimated center of total mass, and P

represents the motion range of the center of total mass. Since
the inertial parameters are unknown before identification, in
order to compute pppest

c , we used the a-priori knowledge like
CAD data. In the field of motion optimization, the conditions
of not only the center of total mass but also ZMP are usually
considered. Unfortunately, before identifying the accurate
inertial parameters, we need to set rather conservative safety
margins in those equations. In our case, P in Eq.(52) was
designed such that the distance between the projected center
of total mass on the XY plane and the center of the
supporting area is within 1 cm.

The self-collision avoidance was also considered by ap-
proximating the robot shape with several capsule primitives
[23]. Then the collision among the primitives can be detected
by checking the distance between line segments. The condi-
tion about the distance between line segment i and j is as
follows:

dline(ppp(s)Li
, ppp(e)Li

, ppp(s)L j
, ppp(e)L j

)< ri + r j (53)

where ri is the allowable penetration distance of line segment
i (or the radius of capsule i), and ppp(s)Li

and ppp(e)Li
mean the

position of the start and end point of line segment i. The
points are located on the coordinate system of joint Li.
Since ppp(s)Li

and ppp(e)Li
are the function of the joint angles, the

analytical derivative of the distance with respect to the joint
angles can be computed by utilizing the basic Jacobians.



B. Results

In order to validate the proposed method, we generated the
trajectories of the humanoid robot HRP-4 [24]. We focused
on generating the motion of the two arms; each of which
has 7 rotational joints; the number of DOF is NJ = 14.
As fast movement of arms makes the robot easily fall
down, the balancing condition needs to be considered. We
solved problem Eq.(7) under inequality constraints Eq.(51),
Eq.(52), and Eq.(53) with a Fourier series Eq.(50), and
optimized parameter ααα .

In this paper, the number of Fourier bases was N = 10,
the basic frequency was ω = π/4. In the cost function,
the number of time instance t was 40 and each timestep
was set at 0.2[s]; the time duration of the trajectory was
total 8.0[s]. Small timestep is not necessary for identification
when concatenating the regressors in Eq.(41). However, the
physical consistent conditions like Eq.(51), Eq.(52), and
Eq.(53) need to be evaluated with higher sampling rate. For
this reason, we check the constraints of 400 time instances at
every 0.02[s]. The optimization was solved by quasi-Newton
method by utilizing the proposed gradient computation.

We at first verified the correctness and the computational
speed of our gradient computation (i.e. Eq.(49)) to the
numerically computed one by the computer with Intel(R)
Core(TM) i7-4800MQ CPU. In the current optimization
procedure, the number of variables is 294(= (2N+1)×NJ).
When the step size of numerical gradient is 1.0E − 6, the
mean relative error norm between the two results is 1.3E−5,
which verified the correctness of our method. The averaged
computation time when computing Eq.(49) is 0.2 [s], while
the time required for the numerical gradient is 17.8 [s]. The
computation time was significantly improved by our method.

Since the formulation of Eq.(41) enables the optimization
of the trajectories by utilizing the a-priori data, we generated
the trajectories by iterating the following process:

1) At first, the trajectory was optimized and generated
without a-priori experimental data: CCC0 = OOO in Eq.(41).
Let CCC(1) be obtained CCC in the first generation process.

2) In i-th generation process (i > 1), all the previ-
ous experimental data was utilized: CCC0

T = [CCC(1)T · · ·
CCC(i−1)T ]T , where CCC(i) � ŶYY B in i-th process.

The trajectories were generated according to the above
procedure. Table I shows the condition number of each
CCC(i) and concatenated CCC. After the fourth iteration, the im-
provement of the condition number was not recognized. For
comparison, we have also generated several trajectories by
using a conventional method [16], based on optimal selection
from randomly generated trajectories with only consideration
on physical consistent conditions. We performed the selec-
tion by limiting the total number of selected motions, and
repeatedly updated the set of motions by adding the motions
of better quality. Table II shows the condition number in
the case of the random generation. As can be seen from
the tables, all the condition numbers in Table I show small
values with respect to the case in Table II. It could show the
efficiency of our optimization-based method.

TABLE I

CONDITION NUMBER OF THE OPTIMIZED REGRESSORS

motion index 1 2 3
(cond(CCC(i))) 47.6 114.2 125.5
(cond(CCC)) 47.6 35.7 33.9

TABLE II

CONDITION NUMBER OF THE RANDOMLY GENERATED REGRESSOR

motion index 1 2 3
(cond(CCC(i))) 274.1 332.0 436.2
(cond(CCC)) 274.1 156.3 124.7

The generated trajectories were performed by using the
humanoid robot HRP-4 in the experiment. Fig.2 show the
snapshots of HRP-4 performing the motions generated by
1st iteration. The robot could perform the motion without
violating mechanical limits, causing self-collision, or falling
down; the physically consistent trajectories could be success-
fully generated in all cases.

V. CONCLUSION

We propose a novel method for generating PE trajectories
by using optimization together with efficient gradient com-
putation of the condition number with respect to the joint
trajectory parameters. Generally in optimization technique,
direct and analytical gradient computation can benefit from
computational speed, accuracy, and stability, compared to
the numerical ones. This computational improvement make
tractable optimization for large DOF systems under many
constraints such as humanoid robots. If some experimental
data are already available, the method can also generate the
trajectories by exploiting such existing data, which allows
the sequential generation of PE trajectories.

Our method was tested on the humanoid robot HRP-4. In
the optimization, we focused on generating the motion with
14 joints in the arms; other joints were fixed at constant
values. The joint trajectories are represented and parameter-
ized by a Fourier series, by taking into account the robot’s
mechanical constraints, self-collision avoidance, and the con-
dition about the whole body COM. The proposed optimiza-
tion framework could successfully generate the trajectories
that satisfy such physical consistent conditions, allowing the
humanoid robot to perform the trajectories without falling
down during the experiments. We generated the trajectories
sequentially by concatenating the data in the optimization
procedure. The resulting condition number converges to 34
until third trial, which is significantly smaller than those
generated from the conventional method of optimal selection
of randomly generated motions.

In the theoretical point of view, the analytical formulation
of the gradient also has a potential to clarify the dynamics
feature of optimal trajectories by checking the analytical
stationary conditions such that the gradient is equal to zero.
It will be addressed in our future work.
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APPENDIX

In this appendix, several basic mathematical notations used
in the paper are introduced.

1) skew operator:

[xxx×] �
[

0 −x(3) x(2)
x(3) 0 −x(1)
−x(2) x(1) 0

]
(54)

2) operator for linear and angular velocities:

[ξξξ •̂]�
[

OOO3×3 [ννν×]
[ννν×] [ωωω×]

]
, ξξξ �

[
ννν
ωωω

]
(55)

where OOOm×n is a m×n zero matrix.
3) operator used in regressor matrix:

[xxx•] �
[

x(1) 0 0 0 x(3) x(2)
0 x(2) 0 x(3) 0 x(1)
0 0 x(3) x(2) x(1) 0

]
(56)

4) coordinate transformation of position and orientation:

A (ppp,RRR)�
[

RRR [ppp×]RRR
OOO3×3 RRR

]
(57)

5) functional matrix for regressor matrix of a rigid body:

Ŷ (aaa,bbb,ccc, ĉcc) =

[
aaa [bbb×]+ [ccc×][ĉcc×] OOO3×3
0003 −[aaa×] [bbb•]+ [ccc×][ĉcc•]

]
(58)

where 000m is a zero vector whose size is m.
6) several shortened forms of Ŷ :

Y (aaa,bbb,ccc) � Ŷ (aaa,bbb,ccc,ccc) (59)

Y A(aaa) � Ŷ (aaa,0003,0003,0003) (60)

Y B(bbb) � Ŷ (0003,bbb,0003,0003) (61)

Y C(ccc, ĉcc) � Ŷ (0003,0003,ccc, ĉcc)+ Ŷ (0003,0003, ĉcc,ccc) (62)


