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Abstract— This paper presents a novel retargeting frame-
work for humanoid robots that allows flexible motion repre-
sentation and motion synthesis with smoothing with constraints
and functional principle component analysis (Functional PCA).
Constrained smoothing consists in computing base functions
through optimizations with constraints including mechanical
limits and stability conditions. By applying Functional PCA that
is a statistic method describing given motions with principal
components of functions, a variety of different motions can
be expressed with a small number of parameters. We apply
the proposed framework to whole-body ”squat” motions to
reveal that those motions can practically be classified with
two components. The effectiveness of the proposed method
is verified by dynamic simulations and experiments with the
humanoid robot HRP-4.

I. INTRODUCTION

Thanks to progress on mechanical and computational
capacity, humanoid robots are expected to be used in wider
applications that take advantage of their anthropomorphic
shape and structure. One of the applications is to employ a
humanoid robot for evaluation of assistive devices designed
for human [1]. Humanoid robots can quantitatively assess
the effect of the devices by measuring the motor joint
torques that are difficult to be estimated from human motion.
Another application is entertainment use where traditional
Japanese dance motions are reproduced by a humanoid robot
[2]. Those motions can be archived as a digital motion
library to maintain the tradition. Since a humanoid robot
has many degrees of freedom, usually more than 30, it is
difficult to design such complex motions for each joint. The
conventional way of motion generation is to apply inverse
kinematics (IK) to compute joint angles to achieve tasks
such as manipulation with end-effectors [3], [4]. However,
for the above applications in which the human-like whole-
body motions are important, a method called ”retargeting”
has often been employed that converts the captured human
motions into motions executable by a humanoid [5], [6]. This
conversion should be done in such a way that the motions
can be performed by a humanoid by satisfying mechanical
constraints and stability conditions.

The standard process of retargeting for humanoids takes
two steps. The marker positions are first converted into joint
angles, and then the motion is adjusted in order to meet
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the mechanical constraints such as joint limits and stability
conditions. Since the measured human data are discrete and
fluctuated, ”smoothing” is often applied by representing the
joint trajectory with linear combination of base functions,
for instance composed of cubic B-spline curves [7]. Then
the resultant joint trajectory is adjusted to meet joint limits
and also stability conditions by maintaining ZMP [8] inside
the support polygon [9].

There are, nevertheless, still two issues to be solved. The
first issue is that the constraints such as joint limits and
stability conditions are not taken into account during the
smoothing process. Modification of trajectory after smooth-
ing may induce inconsistency with respect to the original
human motions. The second problem is that the retargeted
motion does not possess flexibility in the sense that it cannot
be reused to generate slightly different motions. For instance,
concerning squat motions we will deal with, once a human
motion is transformed into a humanoid motion, it cannot be
morphed to another squat motion with a different height.

In order to overcome those issues, we introduce smoothing
with constraints together with functional principal com-
ponent analysis (Functional PCA) [10]. The smoothing is
formulated as an optimization problem to compute the com-
bination of base functions that already satisfy the mechanical
and stability constraints. The Functional PCA is an extended
version of PCA that allows describing a given function with
principle components that are also functions. It brings an
advantage that the same set of principle components of
functions can represent different motions with a reduced
number of parameters changing the combinations. Moreover,
different motions can be synthesized through Functional
PCA, which offers even further variety of humanoid motions.

This paper is organized as follows. After surveying related
works in Section II, we will present the proposed framework
of motion retargeting and synthesis based on functional PCA
in Section III. Section IV provides examples of the whole-
body motions generated by our framework to demonstrate its
smoothing and synthesis capability before summarizing the
paper.

II. RELATED WORK

There are several studies about motion retargeting for a
humanoid robot. Miura et al. devised a retargeting method
by focusing on generating walking pattern [9]. This method
allows the robot to walk similar to human by walking with
stretching knee and single support phase on its toe. Moulard
et al. integrated several kinematic and dynamic constraints
into unified optimization problem [11]. Suleiman et al. [7]
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proposed the retargeting method by parameterizing the joint
trajectories by cubic B-spline and formulated the motion
optimization with respect to the trajectory parameters. The
trajectory optimization of a humanoid robot with balancing
conditions is usually computationally expensive. Since the
control points of cubic B-spline only affect a piece of the
whole trajectory, the sparsity of the Jacobian matrix of
the trajectory with respect to the control parameters leads
the reduction of the computational cost. Due to such a
computational efficiency, we also utilize cubic B-spline for
representing joint trajectories in a similar manner as [7].
Some retargeting methods utilize an online controllers in
order to handle the possible external disturbance. Ott et al.
[12] use balancing control and direct marker control in their
method. The virtual markers computed from human motion
by hidden Markov model generate the motion of a robot
via the direct marker controller. In this paper, we utilize the
motion optimization approach without controllers. On the
other hand, some methods based on motion optimization are
not conflicted with their work [12]; instead of hidden Markov
model, the virtual markers could also be generated from the
joint trajectories by forward kinematics computation.

Though the above related works are mainly dealing with
the motion retargeting problem, we additionally focus on
extracting the motion feature or primitive from motion tra-
jectories in order to synthesize them. Several studies utilize
multivariate PCA or similar techniques for motion classifi-
cation and generation of humanoid systems. Lim et al. [13]
represent the human joint trajectories by the linear combina-
tion of the basis trajectories and applied PCA to extract the
bases in order to reduce the variables of motion optimization.
Matsubara et al. [14] present a method for learning dynamic
movement primitives from multiple set of motion trajectories.
The method extracts the bases of time sequenced trajectories
from those generated by a single primitive, and represents
and obtains the bases with the normalized Gaussian network
model. In contrast to those studies applying PCA to the time
sequenced samples, Alleotti et al. [15] applied Functional
PCA and classified different motions in lower dimensional
functional space. The method utilized cubic B-spline as the
base functions and generated representative motion of the
arms. This work focused on the upper body movement. In our
case, however, physical consistent conditions like balancing
are additionally required. In order to utilize both the motion
optimization and classification, we choose cubic B-spline
curves as the base trajectory function in motion optimization,
and apply Functional PCA to them in order to extract the
functional bases. Our framework is featured by the additional
conditions for physical consistency when synthesizing in
low dimensional space obtained from Functional PCA and
generating joint trajectories. The conceptual diagram of our
framework is illustrated in Fig.1

III. CONSTRAINED MOTION SMOOTHING AND SYNTHESIS

WITH FUNCTIONAL PCA

When we design whole-body motions of a humanoid
robot, the large number of its coordinate variables makes the

Fig. 1. Conceptual diagram of the proposed framework.
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Fig. 2. Example of the base function composed of cubic B splines which
have 11 nodes and 10 small sections (m = 7)

problem difficult. One useful approach is generating whole-
body motion by fewer variables. In this paper, a smoothing
technique is adopted; the trajectory of whole-body motion
can be parameterized by a small set of coefficient parameters
of base functional curves. At the same time, physical consis-
tent conditions like stability have to be considered simultane-
ously. This section presents the retargeting method based on
smoothing with considering those conditions, together with
Functional PCA that allows designing whole-body motions
by controlling a small set of parameters. Functional PCA
can reduce the dimension of motion data-set, which makes it
easier not only to classify several motions but also to extract
the information about motion similarity. This section also
shows the notion of motion synthesis framework by utilizing
the low-dimensional space spanned by Functional PCA.

A. Smoothing with physical consistent conditions

Smoothing is a method for estimating a time curve (tra-
jectory) fitting to a given time-series samples according to a
regression model. Since the estimated curve does not need to
pass exactly the points of samples, smoothing is expected to
be robust to fluctuation and missing samples. Smoothing of
a joint angle trajectory of a robot can be expressed according
to the following regression:

qqq(τ) =
NB

∑
i=1

cccibi(τ) (1)

where, qqq(τ)∈R
NJ is the vector of joint angles at time instant

τ (bold variables mean vectors or matrices, and normal
ones are scalars), NJ means the number of joints, bi(t) ∈ R

represent a cubic B spline function, NB shows the number of
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the spline functions, ccci ∈ R
NJ is the coefficient vector. Each

function bi(τ) is aligned at regular intervals as shown in
Fig.2. Let h be the interval between two spline functions. In
this case, each cubic B spline function bi(τ) can be written
as follows:

bi(τ) =

⎧⎨
⎩

1
6h{(2− s)3 −4(1− s)3} (0 ≤ s ≤ 1)

1
6h (2− s)3 (1 ≤ s ≤ 2)

0 (otherwise)
(2)

s � |τ −h× i|
h

(3)

According to the regression model, we estimate the
smoothed curve from the given data samples about joint
angles. Let NT be the number of time samples, and let
us redefine qqqt and bi,t as the corresponding values at time
sample t(= 1,2, · · · ,NT ), In this paper, we assume that time
samples are given as τ = t ×h.

Smoothing problem with physical consistent conditions is
now formulated as the following optimization problem:

min
ccc1,..,cccNB ,rrr1,...,rrrNT

NT

∑
t=1

||qqqt − q̂qqt ||2

subject to ∀ j, t g j,t(rrrt ,qqqt)≤ 000 (4)

where, q̂qqt is the given data about joint angles at time sample
t, rrrt ∈ SE(3) represents the position and orientation of the
floating base of the robot. Problem Eq.(4) optimizes coeffi-
cient parameters ccci for all base functions (1 ≤ i ≤ NB) and
floating base coordinates rrrt for all time samples (1≤ t ≤NT )
simultaneously. Function g j,t(1 ≥ j ≥ Ng) means Ng set of
physical consistent conditions at time sample t as followings.

a) limitation of joint angles:

qqqmin ≤ qqqt ≤ qqqmax (5)

b) geometric constraints needed for stable contacts:

RRRt, f ooteeez = eeez (6)

eeez
T pppt, f oot = 0 (7)

ṗppt, f oot = 000 (8)

c) stability condition about center of mass (CoM):

(EEE − eeezeeez
T )ssst ⊂ P (9)

where, qqqmax and qqqmin mean the boundaries of joint angles,
pppt, f oot ∈ R

3 ( f oot = r f oot, l f oot) is the position of the
coordinate attached on the left or right foot at time sample
t, RRRt, f oot ∈R

3×3 is the orientation matrix of the foot coordi-
nates, eeez is a unit vector such that [0 0 1]T , ssst is the center
of total mass of the robot at time sample t, P represents
the motion range of the center of total mass, and the area
projected on the XY plane is designed to be equal to the
supporting area which is defined by the feet positions. It
should be noted that Eq.(9) means static stability condition.
In this paper, since we focus on several squat motions which
are relatively slow, we only consider Eq.(9). In order to
handle more dynamic motions, the conditions about ZMP
should be considered as shown in [9].

In this paper, we solve problem Eq.(4) by the penalty
function method in order to reduce the computational time
for the future application like real-time retargeting. Problem
Eq.(4) can be approximated as follows:

min
ccc1,..,cccNB ,rrr1,...,rrrNT

NT

∑
t=1

||qqqt − q̂qqt ||2 +
NT

∑
t=1

Ng

∑
j=1

λ j|max(g j,t ,0)|2 (10)

where, λ j represents the penalty weight of each constraint
g j,t . Since the penalty function method leads the violation
of constraint g j,t , each penalty weight is usually designed
according to the allowable amount of the violation. Problem
Eq.(10) is solved by limited memory quasi-Newton method
[16] with the fast gradient computation method [17].

B. Motion synthesis with Functional PCA

Functional PCA [10] is a statistical method for extracting
important information by analyzing covariance structure and
reducing dimensions of the dataset. In Functional PCA, we
assume the following functional basis:

ξξξ t =
NB

∑
i=1

θθθ ibi,t (11)

where, θθθ i ∈RRRNJ is the vector of the parameters for regression
model Eq.(11). It should be noted that same cubic B-spline
functions bi,t are used to represent basis ξξξ t and joint angles
qqqt . Let the space spanned by the functional bases be called
Functional PC space (FPC space).

We now consider the several motion dataset of joint angle
trajectories; let qqq(n)t be the vector of joint angles at time
sample t of n-th motion dataset, and NM be the number of
motion dataset. Regression model Eq.(1) is also reformulated
as follows.

qqq(n)t =
NB

∑
i=1

ccc(n)i bi,t (12)

Let us then define the following scalar value which is
called Functional PC score (FPC score):

f (n) =
NT

∑
t=1

ξξξ t
T qqq(n)t (13)

The Functional PCA computes basis ξξξ which maximizes
the variance of FPC scores as followings.

var f =
NM

∑
n=1

| f (n)|2 (14)

For convenience of explanation, we concatenate parame-
ters ccc(n)t , θθθ t , and ξξξ t , and let us define the following vectors:

ccc(n) =
[
ccc(n)1

T · · ·ccc(n)NT
T
]T

(15)

θθθ =
[
θθθ 1

T · · ·θθθ NT
T
]T

(16)

ξξξ =
[
ξξξ 1

T · · ·ξξξ NT
T
]T

(17)

Since Eq.(14) can be transformed into the quadratic form
with respect to θθθ , it is known that the solution can be
computed by solving the following eigenvalue problem:

WWWθθθ (k) = λ(k)θθθ (k) (18)
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where, WWW is the covariance matrix which can be computed
from bi,t and ccc(n) [18]. Variable λ(k) means the eigenvalue
of k-th eigen vector θθθ (k). According to Eq.(11) and Eq.(13),
we can also compute functional basis ξξξ (k) and FPC score

f (n)
(k) corresponding to k-th eigenvector θθθ (k).

As a result of those formulations so far, we can synthesize
two motions by using the parameters space of FPC scores.
Let n1 and n2 be the indices of motions used for synthesis.
We assume the following linear combination about FPC
scores:

f̂(k) = u f (n1)
(k) + (1−u) f (n2)

(k) (0 ≤ u ≤ 1) (19)

where, f̂(k) means synthesized k-th FPC score.
Next, let us consider the inverse problem to reconstruct

joint angle trajectory qqq from the given set of FPC scores by
using the solution of eigenvalue problem. We now define the
following vector:

f̂ff =
[

f̂(1) · · · f̂(NM×NT )

]T
(20)

Since Eq.(13) holds for each score of f̂ff , by utilizing
Eq.(11), Eq.(12) and the solutions of Eq.(18), we can have
the following linear relationship:

f̂ff =VVV ĉcc (21)

where, VVV is the coefficient matrix which can be computed
from ξξξ (k) and bi,t . By solving linear form Eq.(21), we

can obtain coefficient ĉcc corresponding to f̂ff . According to
Eq.(12), we reproduce joint angle trajectories q̃qqt .

Though Eq.(19) synthesizes several physically consistent
motions, the synthesis process itself does not guarantee the
consistent condition. In this paper, we focus on the synthesis
of motions which have the same types of constraint. For
example, when synthesizing the squat motion and other
motions, we assume that the both feet are always contacts
on ground during the motions. Then, we solve optimization
problem Eq.(10) by replacing q̂qqt with q̃qqt to realize the same
constraints about physical consistency.

IV. NUMERICAL SIMULATION AND EXPERIMENT

In order to investigate the validity of the proposed retar-
geting framework, the optimization based on smoothing with
physical constraints have been performed on a dataset of
human squat motions obtained from motion capturing. The
dataset includes the following three types of squat motions:
the squat motion with both feet aligned, the squat with right
foot in front, and with left foot in front. The retargeted
squat motions were executed with both dynamic simulation
Choreonoid [6] and humanoid robot HRP-4 [19]. The motion
synthesis using Functional PCA have been applied to the
data-set. In the Functional PCA analysis, we tested the
squat motions with right or left foot in front. The several
synthesized motions were created by using some set of
parameter u in Eq.(19).

Fig. 3. Initial feet posture in the retargeted motions. The left and right
figures show the results with and without constraint respectively.

A. Retargeting by smoothing with stability constraints

We applied the retargeting method to one squat motion
which has 391 frames and the frame rate is 10 [ms]. Since the
number of base functions NB has an influence on the perfor-
mance of motion reconstruction, we varied NB and tested the
method in order to experimentally find the appropriate value.
Since the final cost of Eq.(10) has small change when NB is
greater than 30, we chose and fix NB = 30 in the following
implementations.

In order to clarify the difference of the retargeting method
between with and without constraints, we at first tested the
method without constraints. The obtained motions could not
be performed without falling down in the dynamics simula-
tion. When using the actual robot, HRP-4 could not realize
even the initial posture of the retargeted motion. It is mainly
because the foot sole planes were not horizontal as shown in
Fig.3, which implies the importance of consideration about
the consistent conditions.

The retargeting method by smoothing with constraints was
tested on the same squat motion. Since the operation speed
of the measured motion was far from the maximum speeds of
the joints of the robot, we made the motions two times slower
for retargeting. The squat motion obtained from motion
capturing is shown in Fig.4. The snapshots of the motion
simulated on the dynamic simulator are shown in Fig.5. As
can be seen from Fig.5, the robot could imitate the original
motion and execute the smoothed motion without violating
kinematic constraints. The experimental results of smoothed
squat motion with HRP-4 are shown in Fig.6. The humanoid
motion was executed with a half speed of the original human
motion by considering the mechanical capacity of the robot.
HRP-4 could perform the motion without falling down. The
simulation and experimental results verified the feasibility of
the trajectory generated from constrained smoothing.

B. Motion synthesis with Functional PCA

We applied our smoothing method to the dataset consisting
of two types of squat motion: the motion with the right foot
in front and the other back, and the squat with the left foot in
front and the other back. The dataset has 4 trials of each type
of squat motion; the total number of retargeted and smoothed
motion used for Functional PCA is 8. In motion synthesis
process, all motions were synchronized in advance in order
to have the same timing when the knee is bent. In order to
have the same time duration among all motions, they were
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Fig. 4. Measured human squat motion

Fig. 5. Simulation result of retargeted squat motion using smoothing with stability constraints

Fig. 6. Experimental result of retargeted squat motion using smoothing with stability constraints with humanoid robot HRP-4

trimmed or extended by adding the redundant time frames
before or after the motion.

All smoothed dataset were projected to the FPC space
by using Eq.(13). The generated FPC space spanned by the
first to third principle components is shown in Fig.7. We
can recognize that the FPC scores are successfully classified
according to the two types of squat motion. The red circles
represent 4 samples of squat motion with left foot in front,
and the green ones are those with right foot in front. Before
motion synthesis, we average the FPC scores of each 4
samples. The averaged ones are illustrated as the red or
green triangle in Fig.7. Let them be called the representa-
tive motions. The two types of representative motion were
synthesized according to Eq.(19) with different synthesis
ratio: u = 0.3,0.5,0.7 respectively. The black marks in Fig.7
show the synthesized FPC scores. The synthesized joint
trajectories were computed from the synthesized FPC scores
by Eq.(21). The obtained trajectory was finally modified
by the smoothing process in order to realize the physical
consistent conditions. Fig.8 shows the trajectories of the
right ankle pitch joint during the representative motions and
the synthesized motions. With the increase of the synthesis
ratio, we can see that the synthesized motion becomes close
to the representative squat with the left foot in front. We
also tested the representative motion and the synthesized
motion by using the dynamics simulation. The snapshots
of the simulation results are shown in Fig.9, Fig.10, and
Fig.11; Fig.9 shows the representative motion with the left
foot in front, Fig.10 and Fig.11 illustrate the synthesized

Blended motion (u=0.3)

Blended motion (u=0.7)
Blended motion (u=0.5)

Squat with left foot in front
Squat with right foot in front
Representative squat with left foot in front
Representative squat with right foot in front

Fig. 7. FPC space spanned by two kinds of squat motion. The averaged
FPC score of the two types are synthesized with different synthesis ratio.

motion with synthesis ratio u = 0.5 and u = 0.3 respectively.
As can been seen from the figures, the foot placement of
the robot was gradually changed according to the synthesis
ratio. Especially when u = 0.5, the standard squat motion
with the both feet aligned was generated. Those results show
that various motions can be generated by synthesizing limited
number of motion dataset by utilizing Functional PCA. Since
the robot could perform the motion without falling down in
the dynamics simulations, our framework can also guarantee
the physical consistency of the synthesized motion.

V. CONCLUSION

We proposed a retargeting framework using constrained
smoothing and Functional PCA with possible synthesizing
of different motions. We applied this method to normal
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Fig. 8. Joint angle trajectories of the right ankle pitch joint in the
representative motions and the synthesized motions.

Fig. 9. Simulation result of the representative squat motion with the left
foot in front

squat, squat with the right foot in front and the other back,
squat with the left foot in front and the other back. All
of the resulted motion succeeded in dynamic simulation
and it reproduced the original human motion closely in
appearance with physical constraints satisfied. The feasibility
of normal squat motion was verified through the experi-
ment with humanoid robot HRP-4. We also showed the
possibility of using Functional PCA to generate various
motions by synthesizing limited number of motion dataset.
The several motions synthesized by our framework could be
successfully performed in dynamic simulation. It indicates
that our framework can guarantee the physical consistency
of the synthesized motions. In our current framework, the
motion synthesis and the process to add physical consistent
constraints are separated. In order to synthesize the motions
with several different constrains, these two processes need to
be performed simultaneously, and will be addressed in our
future work.
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