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This paper describes an algorithm that enables a humanoid robot to perform an impulsive
pedipulation task on a spherical object in the environment; that is, by using its feet to exert an

impulsive force capable of driving the object to a 3D goal position while achieving certain

motion characteristics. This is done by planning a suitable motion for the legs of the humanoid,
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capable to exert the required impact conditions on the spherical object while maintaining the

dynamic stability of the robot. As an example of this algorithm implementation we consider the

free kick in soccer and take it as a case study. Finally, we provide some simulation and ex-
perimental results that intend to show the validity of this algorithm.

Keywords: Humanoid; impulsive pedipulation; kicking motion; 3D goal position.

1. Introduction

Manipulation, from the Latinmanus \hand" plus the root plere \to ¯ll", is de¯ned as

the sense of \skillful handling of objects"; that is, a dexterous method or process by

which objects are moved, operated or controlled by using the hands, or any other

mechanical means.1 One of the main purposes of traditional industrial robots is the

manipulation of objects in the environment by means of an end e®ector, whose shape

and functionality depend highly on the task it is meant for. One common approach is

to use grippers, \hand"-like end e®ectors intended for skillfully handling targeted

objects by means of a pick-and-place strategy; that is, by grasping them, carrying

them to a new location, and releasing them.2

On the other hand, humanoid robots may or may not have a proper grasping

system, as the focus of most of the research nowadays is on the locomotion and the

whole body motion itself. Furthermore, even if they had such a system providing the

functionality of the hand, this one may lack the size, strength, or dexterity needed to

grasp objects in the same way that humans do.3 These objects in the environment

can be located at di®erent heights, or even placed at °oor level, such that if the robot

is required to change the position or layout of these objects without lifting them from

the °oor, the robot would have to bend down to perform the manipulation task.

However, this is not e±cient from the point of view of the energy required. In such a

situation, humans even choose to push (or tap) the object by means of their feet.

These objects may represent an obstruction on the path, which can be easily cleared

by using the feet if the objects are light enough, especially if the grasping system is

dedicated to another task. Then, it is worth to consider the use of the feet (or any

part of the legs) of the humanoid robot as an alternative end e®ector.

This last kind of \manipulation" which uses the feet instead of the hands can be

termed as pedipulation, from the Latin pes (genitive pedis) \foot",1 and de¯ned as

the process by which objects in the environment are moved, operated or controlled

by using the feet, especially in a skillful manner. This term has been previously used

in the robotics literature, referring to the footstep planning for a humanoid robot and

to describe the action performed by the foot of a human or a robot when it is used to

juggle objects, but not in a generalized way of handling them with the feet while

maintaining its balance.4,5 In order to perform these pedipulation tasks, the robot

could simply make use of articulated toes intended to grasp objects. However, this

behavior is not typical on humans and not practical either, as it would require

complex additional hardware to be installed at the feet. That is, conventional grasp-

based pedipulation is not practical. As a feasible alternative it is possible for the
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actual feet of the robot to make use of graspless strategies. These ones exploit the

mechanics of the task to achieve a goal state without the need of specialized hard-

ware, allowing simple mechanisms to accomplish complex tasks.3

Graspless strategies are characterized by the use of repulsive forces, which may be

impulsive or non-impulsive. Impulsive forces are mainly used by striking strategies

which basically provide the initial linear and angular velocities to an object by means

of an impact. Then, this object continues its motion subject to forces and constraints

imposed by the environment.6 Non-impulsive forces, on the other hand, are mainly

used by pushing, throwing, rolling and other strategies. Pushing is preferable when a

¯ne handling is required, or in case that the initial and the goal locations share the

same support face and the distance between them be short enough.3 In this case the

movement of the object coincides with the motion of the robot, as detaching is not

desirable. The other strategies smoothly accelerate the object and release it when the

required linear and angular velocities are reached, letting the object to continue its

motion.7,6

Pedipulation tasks that use non-impulsive or impulsive strategies are not un-

common in our daily lives. For example, when pushing a pedal or operating any

mechanism placed at °oor level. It is also possible, as mentioned before, to push or

strike an object at °oor level to move it, in order to line it up, bring it closer or push it

away, without bending down. Other typical applications can be found in some sports

as in soccer, being the most representative one, whose primary objective is to drive

the ball to the opposite goal by using the feet, involving tasks such as stopping

(\killing"), dribbling and kicking the ball. The kicking motion is not a new issue for

the research in humanoid robots. It has been previously addressed several times. For

example, Müller et al. focused on creating complex motions by dividing them into

simple phases like kicking to the front or to the side,8 while Wenk and R€ofer suc-

cessfully calculated how to kick a ball in a certain 2D direction by using a mathe-

matical model of the contour of the swing foot.9 Others just took this motion as an

example to validate optimization and planning algorithms,10–12 stabilization or

whole body motion generation.13,14 That is, the respective research has mainly been

focused on the humanoid motion itself and the stability of the humanoid robot

without considering to achieve any speci¯c goal position, not even in 3D. On the

other hand, some works dealt with the trajectory of the ball without considering the

complexity of a humanoid robot, which has no ¯xed link. For example, Schempf et al.

developed a ¯xed-base robotic leg capable of kicking a ball to a distance of about

20m and with a height of 3–5m, without having a particular position as a target.15

Choi et al. also used a similar ¯xed-based leg but they focused on the trajectory of the

ball resulting from a given kicking motion without solving the inverse problem; that

is, without considering the way of producing the necessary impact conditions on a

ball for it to follow some desired trajectory.16

It is our concern for a humanoid robot to perform this type of pedipulation tasks

in order to achieve a desired behavior on the pedipulated object. For this purpose,

the main contribution of this paper is the solution of the corresponding inverse
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mechanics problem and the planning of a suitable stable motion for the humanoid

robot capable to achieve the required impact conditions.

Having this purpose in mind, we chose to deal with the kicking motion problem

such that a ball, idealized as a rigid body, could reach a speci¯c goal position with

certain motion characteristics. Solving this problem can improve the capabilities of

the actual humanoid robots that play soccer in tournaments by using simplistic

methods. One of these tournaments, RoboCup, has as an o±cial goal that \by the

middle of the 21st century, a team of fully autonomous humanoid robot soccer players

shall win a soccer game, complying with the o±cial rules of FIFA, against the winner

of the most recent World Cup."17 But, besides that direct application, we believe that

if this problem is successfully solved, our approach can be applied to other pedipu-

lation tasks involving non-spherical objects that can be modeled as rigid ones, im-

proving the \manipulation" capabilities of the robot without using additional

hardware.

2. Problem Statement

Considering the free kick motion in soccer as a case study on impulsive pedipulation,

the present work focuses on driving a ball to a desired 3D goal position while

achieving certain motion characteristics and considering the constraints imposed by

the nature of the impact. The required impact should be exerted by the foot of a

humanoid robot, whose motion needs to be properly planned to perform the desired

task while ensuring the stability of the robot.18

In order to solve this problem we propose to follow the process represented by the

°owchart shown in Fig. 1 and explained as follows:

(i) Given a 3D goal position for the ball, as well as some desired motion char-

acteristics, it is ¯rst necessary to calculate the required initial linear and angular

velocities of the ball; that is, to solve its inverse motion model.

(ii) Assuming that the ball is originally steady, it is necessary to calculate the

impulse required to produce the change in momentum leading to the desired

motion, as well as where to apply it; that is, some impact coordinates de¯ned on

the ball. Both the impulse vector and its point of application are the required

impact conditions.

(iii) By taking into account both the impulsive model of the ball and the impulsive

model of the robot, the required approaching velocity of some selected opera-

tional point on the swing foot is then calculated.

(iv) By knowing the contact point where the impulse should be applied and, pro-

posing feasible attitudes for the support foot and the waist, the con¯guration of

the humanoid robot at the instant of the impact can be calculated.

(v) By proposing proper detaching and landing footprints, a trajectory for the swing

foot can be generated, as well as some desired ZMP trajectory that assures the

dynamic stability of the humanoid robot.
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(vi) Finally, the proposed generated motion is stabilized by means of a proper stable

trajectory for the waist, capable of realizing the ZMP trajectory.

The next sections deal with every one of these stages.

3. Projectile Motion

Let us consider a world reference frame fWg whose Z -axis points upwards, as well as

a local reference frame fBg rigidly attached to the center of mass (CoM) of the ball.

Any vector that is described in fBg will be denoted with a leading superscript

indicating that it is referenced to it. Vectors that are not denoted by any leading

superscript should be considered as being described in fWg. Position vectors are

always denoted by p plus a descriptive subscript.

Also, let us assume that the ball will follow a projectile motion under the sole

in°uence of gravity; that is, the e®ect of various aerodynamical forces (the drag force

and the \Magnus e®ect") will be neglected.16 Under these circumstances the mag-

nitude of the angular velocity of the ball during the trajectory cannot change. Then,

the magnitude of its initial angular velocity, !B;0, should be equal to the ¯nal one,

!B;f ; that is,

!B;0 ¼ !B;f : ð1Þ

Now, given a 3D goal position for the ball, pG, we can use the standard projectile

motion equations under the sole in°uence of gravity that describe the trajectory of its

Input:
3D Goal posi on
Desired mo on

Start

Calculate:
Inverse mo on model of the ball

Calculate:
Required impact condi ons

Generate:
Trajectory for the swing foot

Trajectory for the desired ZMP

End

Calculate:
Stable trajectory for the waist

Calculate:
Approaching velocity of the

opera onal point on the swing foot

Define:
Humanoid configura on

at impact

Fig. 1. Steps needed to solve the impulsive pedipulation problem.
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CoM, pOB
ðtÞ, to ¯nd a suitable initial velocity vector, vOB ;0. This trajectory is

given by

pOB
ðtÞ ¼ pOB

ðtkÞ þ vOB ;0t �
1

2
gt 2; ð2Þ

where tk is the instant of the impact, g ¼ ½0 0 �g �T is the gravity vector and g is

the acceleration due to gravity, whereas the initial linear velocity vector, vOB ;0, may

be described by the magnitude vOB ;0 and two angles representing its direction ð�m;
�m;0Þ (Fig. 2): �m, the azimuthal angle between the ground projection of the trajec-

tory and the X -axis of fWg, and �m;0, the angle of launch. In such a way that

vOB ;0 ¼
vOB ;0 cos�m cos �m;0
vOB ;0 sin�m cos �m;0

vOB ;0 sin �m;0

2
64

3
75; ð3Þ

then, considering the goal is attained at time T , we can get pG ¼ pOB
ðTÞ.

Now, let us de¯ne rG=OB0
:¼ pG � pOB ;0, such that

rG=OB0
¼

rG=OB0x

rG=OB0y

rG=OB0z

2
4

3
5 ¼

vOB ;0T cos�m cos �m;0
vOB ;0T sin�m cos �m;0

vOB ;0T sin �m;0 �
1

2
gT 2

2
664

3
775: ð4Þ

The angle �m represents the orientation of the plane of motion (where the pro-

jectile motion actually occurs) with respect to the XZ -plane of fWg, remaining

constant during the whole trajectory. Then, it can be directly calculated from the

goal position as

�m ¼ arctan 2ðrG=OB0y
rG=OB0x

Þ: ð5Þ

However, the other three variables (T , vOB ;0, �m;0) cannot be directly calculated

because the three equations are not independent. There is an in¯nite set of possible

Fig. 2. Projectile motion.
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trajectories capable of accomplishing the required goal, unless we specify another

constraint for the problem.

Let us select the reaching angle �m;f (Fig. 2) as a constraint. This one is de¯ned as

the direction of the motion of the projectile at the goal position, and within the plane

of motion; that is, the angle between the velocity vector at that point, vOB ;f , and the

XY -plane of fWg.
The velocity of the ball at the goal position is obtained by vOB ;f ¼ d

dt pOB
ðTÞ ¼

½vOBx ;f vOBy ;f vOBz ;f �T , such that

tan �m;f ¼
vOBz ;fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v 2
OBx ;f

þ v 2
OBy ;f

q ¼
vOB ;0 sin �m;0 � gT

vOB ;0 cos �m;0
: ð6Þ

Now, let us focus in Eq. (4). From the expression for rG=OB0x
we can solve for the

required time to accomplish the goal, T , as

T ¼
rG=OB0x

vOB ;0 cos�m cos �m;0
; ð7Þ

which can be substituted into the expression for rG=OB0z
to get

rG=OB0z
¼

rG=OB0x

cos�m
tan �m;0 �

1

2
g

r 2
G=OB0x

cos2 �m

 !
1þ tan2 �m;0

v 2
OB ;0

 !
: ð8Þ

Substituting T of Eq. (7) into Eq. (6) the velocity vOB ;0 can be calculated as

vOB ;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rG=OB0x

cos�m

g 1þ tan2 �m;0
� �

tan �m;0 � tan �m;f

s
: ð9Þ

Then, by considering the expression given in Eq. (8) and substituting this value,

vOB ;0, it is possible to compute the required angle of launch, �m;0, as

�m;0 ¼ arctan 2rG=OB0z

cos�m
rG=OB0x

� tan �m;f

 !
: ð10Þ

4. Impulsive Contact Models

After ¯nding the required initial linear and angular velocity vectors of the ball (vOB ;0

and !B;0), and assuming that the ball is originally steady as well as rigid, it is

necessary to calculate the impulse ~f cB needed to produce the change in momentum

required to achieve the desired motion, as well as the point on the ball to apply that

impulse; that is, the impact coordinates, ð�0; �0Þ (Fig. 3).
Then, we are able to calculate the approaching velocity of some selected opera-

tional point on the swing foot, which will exert the necessary impulse to start the

motion of the ball. This is done by ¯rst formulating and solving the dynamical model

of both the ball and the robot at the instant of the impact; that is, considering the
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presence of the external impulse and a point contact model, given that the current

humanoid robots cannot kick fast enough to produce considerable deformation on

the ball.

4.1. Orientation of the ball

By idealizing the ball as a plain sphere of radius r, it does not have any inherent

orientation. However, in order to introduce the impact coordinates, ð�0; �0Þ, into the

model we can consider that its local reference frame, fBg, is oriented in such a way

that the ball is always kicked at the same point described in the local reference frame;

that is, the contact point on the ball, BpcB , has a constant representation on fBg (see
Fig. 4), given by

BpcB ¼ �rB 0 0½ �T : ð11Þ

Then, if we describe the orientation of fBg with respect to fWg by using the Euler

ZYX convention and the orientation coordinates ð�B ; �B ;  BÞ, we will have the

X

Z

Y

BX
BZ

BY

B

B

B
cp

Bcf

Br

Fig. 4. Relationship between the ball reference frame and the world reference frame.

X

Z

Y

Bcf

Fig. 3. De¯nition of the impact coordinates in the world reference frame.
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following correspondence with the impact coordinates: �0 ¼ �Bðt0Þ and �0 ¼ �Bðt0Þ,
where t0 stands for the initial time. The rotation matrix that describes the orienta-

tion of fBg with respect to fWg is denoted by RB(�B ; �B ;  B), and expressed as

RB ¼
c�c� �s�c þ c�s�s s�s þ c�s�c 
s�c� c�c þ s�s�s �c�s þ s�s�c 
�s� c�s c�c 

2
4

3
5; ð12Þ

where c� ¼ cos�B , s� ¼ sin�B , c� ¼ cos �B , s� ¼ sin �B , c ¼ cos B and s ¼ sin B .

Let us remark that only when �B ¼ � �
2 the matrix RB becomes singular; that is,

when describing the highest and lowest points of the ball, which are not of interest to

the task as no useful kicks can be attained at those points.

4.2. Lagrange equation of the ball

Let us describe the con¯guration of the ball, qB 2 R6, by using the set of generalized

coordinates given by the position of its CoM, pOB
, and its orientation coordinates, as

qB ¼ qT
Bp

qT
Br

h i
T
¼ pOBx

pOBy
pOBz

�B �B  B

� �
T : ð13Þ

If the mass of the ball is denoted as mB and its inertia tensor with respect to its

center of gravity as IB, then its kinetic energy, TB , is given by

TB ¼ 1

2
mBv

T
OB

vOB
þ 1

2
!B

TIB!B; ð14Þ

where vOB
and !B are the linear velocity of CoM of the ball and its angular velocity,

respectively. The linear velocity is related to the rate of change of the position

coordinates by

vT
OB

vOB
¼ _pT

OB
_pOB

¼ _p2
OBx

þ _p2
OBy

þ _p2
OBz
: ð15Þ

The angular velocity, on the other hand, is related to the rate of change of the

orientation coordinates ð�
:
B ; �
:
B;  

:
BÞ given that the skew-symmetric matrix of the

angular velocity vector of the ball, denoted as !̂B, is a function of _RB:

!̂B ¼ ð _RBÞðRBÞT : ð16Þ

Remembering that a skew-symmetric matrix !̂ of a vector ! is de¯ned as

!̂ :¼
0 �!z !y

!z 0 �!x

�!y !x 0

2
4

3
5; 8! ¼

!x

!y

!z

2
4

3
5; ð17Þ

then the vector !B can be extracted from Eq. (16) and written as

!B ¼
0 �s� c�c�
0 c� s�c�
1 0 �s�

2
4

3
5 �

:
B

�
:
B

 
:
B

2
664

3
775 ¼ B _qBr

: ð18Þ
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Finally, the inertia tensor of the ball can be expressed as

IB ¼ �BmBr
2
BE3; ð19Þ

where En 2 R3�3 is an identity matrix and �B is termed as the construction coe±-

cient of the ball. This one lets us generalize the inertia tensor to any type of ball,

whether it is a ¯lled sphere with constant density, �B ¼ 2
5, an ideal hollow sphere,

�B ¼ 2
3, or any other spherical construction. For example, according to Brody,19 for a

pressurized tennis ball �B ¼ 0:535, whereas for a pressureless one �B ¼ 0:509.

On the other hand, the potential energy is given by

VB ¼ mBg
TpOB

: ð20Þ

Having done this, the Lagrangian is calculated as LB ¼ TB � VB, such that the dy-

namical equation of the ball during the impact can be expressed by

d

dt

@LB

@ _qB
� @LB

qB
¼ QB; ð21Þ

whereQB 2 R6 stands for the resultant of all the generalized forces at the moment of

the impact. Assuming that only two generalized forces are present: one related to a

non-impulsive normal force exerted by the ground at the lowest part of the ball,

QsB 2 R6 (assuming that the ball is not hit against the ground), and one related to

an impulsive force created by the impact,QcB 2 R6, then we haveQB ¼ QsB þQcB .

4.3. Description of the impulsive force

In order to calculate the generalized impulsive force created by the impact, we need

¯rst to express BpcB de¯ned in Eq. (11) in fWg as

pcB ¼ pOB
þRB

BpcB ¼
pOBx

� rBc�c�
pOBy

� rBs�c�
pOBz

þ rBs�

2
4

3
5; ð22Þ

from which the Jacobian JB;c;v 2 R3�6 that relates the velocity of pcB , denoted as

vcB , with _qB is calculated by di®erentiating the last equation with respect to t as

JB;c;v ¼
1 0 0 rBs�c� rBc�s� 0

0 1 0 �rBc�c� rBs�s� 0

0 0 1 0 rBc� 0

2
4

3
5: ð23Þ

The transpose of this Jacobian, JT
B;c;v, relates the force fcB applied to the point

pcB with the generalized impulsive force QcB ; that is,

QcB ¼ JT
B;c;vfcB : ð24Þ

Also, in a similar way, QsB can be written as QsB ¼ JT
B;s;vfsB .
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4.4. Impulsive contact model of the ball

One way of computing the impulsive contact model of the ball is suggested by

Walker.20 The dynamical equation of the ball in Eq. (21) can also be expressed as

MB €qB þ CB þ GB ¼ JT
B;s;vfsB þ JT

B;c;vfcB ; ð25Þ

where MB 2 R6�6 corresponds to the mass matrix, whereas CB 2 R6 and GB 2 R6

correspond to the coupling and gravitational vectors, respectively.

This dynamical model is valid only during the short time that the collision lasts;

that is, from tk (the instant of the impact) to tk þ�t. Let us integrate Eq. (25) in this

period of time and assume that �t is too small that it is possible to idealize it as

�t ! 0. Under this assumption, the position and orientation of the ball remain

constant during the period of contact. Also, all the velocities, the gravitational e®ect

and the non-impulsive forces are assumed to be ¯nite, such that the integral termsR tkþ�t
tk

CBd� ,
R tkþ�t
tk

GBd� and
R tkþ�t
tk

JT
B;s;vfsBd� become zero as �t ! 0.16,20 On the

other hand,
R tkþ�t
tk

fcBd� produces a ¯nite impulse, denoted by ~fcB , such that

MB¢ _qB ¼ JT
B;c;v

~fcB ; ð26Þ

where ¢ _qB ¼ _qBðtþk Þ � _qBðt�k Þ (as �t ! 0, t�k and tþk will be used to refer to the

instants just before and after the impact, respectively). The expression Eq. (26) corre-

sponds to the principle of generalized impulse andmomenta,which can alsobewritten as

� _qB ¼ M �1
B JT

B;c;v
~fcB ; ð27Þ

given thatMB is a positive-de¯nite matrix and its inverse exists.

4.5. Impulsive contact model of the humanoid

Let us describe the con¯guration of a humanoid robot of n structural degrees of

freedom (dof), qR 2 Rnþ6, by using the set of joint variables, qRµ
2 Rn, plus the

position and orientation of a link of the robot chosen as a reference, qRp
2 R3 and

qRr
2 R3, respectively. This reference link can be the waist of the robot or its support

foot. In this way, qR ¼ ½qT
Rµ

qT
Rp

qT
Rr

�T . Then, the dynamic model of the humanoid

robot can be expressed in a similar way as for the ball, Eq. (25), as

MR€qR þ CR þ GR ¼ ¿R

0

� �
þ JT

R;s
fsR
¿ sR

� �
� JT

R;c;vfcB : ð28Þ

In a similar way, MR 2 Rðnþ6Þ�ðnþ6Þ corresponds to the mass matrix of the robot,

whereas CR 2 R6 and GB 2 R6 correspond to the coupling and gravitational vectors,

respectively. Also, ¿R 2 Rn comprises the joint torques, whereas fsR and ¿ sR represent

the force and moment exerted by the ground to the sole of the support foot and �fcB ,

the reaction exerted by the ball (same magnitude and opposite direction) on the

selected operational point; that is, the contact point on the foot of the robot, pcR .

The Jacobian that relates the velocity of this point, vcR , with the rate of change of the

Impulsive Pedipulation of a Spherical Object with 3D Goal Position by a Humanoid Robot

1650003-11



generalized coordinates of the robot, _qR, is denoted as JR;c;v 2 R3�ðnþ6Þ, whereas the

Jacobian that relates the linear and angular velocities of the sole of the support foot to

these generalized coordinates is denoted as JR;s ¼ ½JT
R;s;v JT

R;s;! �T 2 R6�ðnþ6Þ.

Let us assume that the generalized impulsive force is small compared to the joint

torques required to produce the motion of the robot (a realistic assumption). Then,

we can imagine the robot at the moment of the impact as just one rigid object (not an

assembly of links) and propose an alternative dynamic model by considering the

generalized coordinates �qR 2 R6, such that �qR ¼ ½qT
Rp

qT
Rr
�T . In this way,

�MR
€�qR þ �CR þ �GR ¼ �J

T
R;s

fsR
¿sR

� �
� �J

T
R;c;vfcB ; ð29Þ

where �MR 2 R6�6, �CR 2 R6, �GR 2 R6, �JR;s 2 R6�6 and �JR;c;v 2 R3�6. The \bar"

over each variable indicates that it corresponds to the alternative dynamic model. By

integrating Eq. (29) from tk to tk þ�t such that �t ! 0 and considering similar

assumptions as for the case of the ball we get

�MR¢ _�qR ¼ �J
T
R;s

~fsR
~¿sR

" #
� �J

T
R;c;v

~fcB ; ð30Þ

where we considered that the ground reaction was also impulsive. The impulsive

force exerted by the ball on the robot will be directed against the °oor or parallel to it

and compensated by the ground, as no penetration is allowed and supposing that the

friction between them is large enough to prevent sliding.

Assuming that every link of the robot has nonzero mass, length, and moment of

inertia about its CoM, MR will always be a positive-de¯nite matrix,21 and Eq. (30)

may be expressed in a similar way as for the ball, as

¢ _�qR ¼ �M
�1
R

�J
T
R;s

~fsR
~¿sR

" #
� �J

T
R;c;v

~fcB

 !
: ð31Þ

5. Required Impact Conditions

Let us consider Eq. (26). This equation is a nonlinear function of ~fcB , �B , �B,  B and

¢ _qB. However, by considering that the ball is steady just before the impact we have

_qBðt�k Þ ¼ 0, so that ¢ _qB ¼ _qBðtþk Þ, which is a function of the required initial linear

and angular velocities of the ball, vOB ;0 and !B;0. In particular, !B;0 is closely related

to �
:
Bðtþk Þ, �

:
Bðtþk Þ and  

:
Bðtþk Þ by means of B. By expanding Eq. (26) we get six

equations corresponding to each of its components. The ¯rst three equations relate

the applied impulse to the initial linear momentum of the ball, such that we can

directly calculate ~fcB as

~fcB ¼ mBvOB ;0: ð32Þ
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On the other hand, the following three equations give us the relationship for its

initial angular momentum, from where it is possible to calculate the necessary impact

coordinates �0 ¼ �Bðtþk Þ and �0 ¼ �Bðtþk Þ by solving:

~f cBx
s�c� � ~f cBy

c�c� þ �BmBrB B0

:
s� ¼ �BmBrB�B0

:
;

~f cBx
c�s� þ ~f cBy

s�s� þ ~f cBz
c� ¼ �BmBrB�B0

:
; ð33Þ

�B0

:
s� ¼  B0

:
;

where c� ¼ cos�0, s� ¼ sin�0, c� ¼ cos �0 and s� ¼ sin �0. However, this last system

of equations is overdetermined as we have three equations but just two unknowns.

This means that we cannot specify the rate of change for the three orientation

coordinates independently, but only for two of them. We arbitrarily choose to specify

�B0

:
and �B0

:
, and to treat  B0

:
as a variable whose value depends on the evolution of

the system. In this way, we shall solve:

~f cBx
s� � ~f cBy

c� � �BmBrB�B0

:
c� ¼ 0;

~f cBx
c�s� þ ~f cBy

s�s� þ ~f cBz
c� � �BmBrB�B0

:
¼ 0:

ð34Þ

5.1. Main components of the impulse

When two rigid bodies collide, a point on the surface of one of them is coincident with

a point on the surface of the other at the contact point pc during the brief period of

contact. If at least one of the bodies has a surface that is topologically smooth at the

contact point, there is a plane tangent to this surface at this point. If both bodies are

convex and the surfaces have continuous curvature near the contact point, then this

tangent plane is tangential to both surfaces that touch at pc; i.e., the surfaces of the

colliding bodies have a common tangent plane.22

Then, the impulse ~fcB may be resolved into two orthogonal components (Fig. 5)

with respect to this common tangent plane: (i) a normal component (~fcBn
) which is

directly related to the change in relative motion of the points that come into contact,

and (ii) a tangential component (~fcBt
) which has to be produced just by the e®ect of

Bcf

Btcf

Bncf
n̂

t̂

Fig. 5. Normal and tangential components of the impulse.
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friction22,23 so that

~fcB ¼ ~fcBn
þ ~fcBt

¼ ~fcBn
�n þ ~fcBt

�t; ð35Þ

where �n and �t are the unit vectors directed in the directions of the orthogonal

components. Also, it is worth to notice that the magnitude of the tangential com-

ponent is limited by the coe±cient of friction, �, as

~fcBt
� � ~fcBn

: ð36Þ

This inequality must be considered when solving Eq. (34), as explained later.

The vector �n can be calculated from Eq. (22) as

�n ¼
pOB

� pcB

jjpOB
� pcB jj

¼
c�c�
s�c�
�s�

2
4

3
5; ð37Þ

such that for the magnitude of the normal component of the impulse we have

~fcBn
¼ ~fcB � �n ¼ fcBx

c�c� þ fcBy
s�c� � fcBz

s�: ð38Þ

The vector �t can be found by ¯rst realizing that it must lie inside of a unit circle

perpendicular to �n. Let us parametrize this circle by using the angle �, such that

�t ¼
�c�s� þ s�c�s�
c�c� þ s�s�s�

s�c�

2
4

3
5; ð39Þ

where c� ¼ cos � and s� ¼ sin �. Then, for the magnitude of the tangential compo-

nent of the impulse we have

~fcBt
¼ ~fcB � �t ¼ �fcBx

c�s� þ s�c�s� þ fcBy
c�c� þ fcBz

s�s�s� þ s�c�; ð40Þ

from which the angle � can be found by solving
@~fcB t

@� ¼ 0, such that

� ¼ � �

2
þ arctan

fcBx
s� � fcBy

c�

fcBx
c�s� þ fcBy

s�s� þ fcBz
c�

 !
: ð41Þ

5.2. Solving the impulsive contact model of the ball for Á0, µ0

The nonlinear system of equations shown in Eq. (34) shall be solved for �0 and �0 by

using a multi-objective optimization procedure as it is the goal attain method.24 This

one solves the multi-objective optimization problem de¯ned as

min
y2@

F yð Þ; ð42Þ

where y is the design parameter vector, @ is the feasible parameter space and F is the

objective vector function, by converting it into the following nonlinear programming
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problem:

min
�;y2@

� such that
FðyÞ �w � � � ´

cðyÞ � 0

�
: ð43Þ

Here, ´ is a vector of goals for the designed objective vector function F , w is a

vector of weights such that wi > 08i, and cðyÞ � 0 represents a set of nonlinear

inequalities that constrain the solution of the problem. The minimization of the

scalar � leads to the acquisition of a non-dominated solution which under- or over-

attains the speci¯ed goals to a degree represented by the quantities wi � �.25
For this optimization problem, based on Eq. (34), we de¯ne

FðyÞ ¼
~fcBx

s� � ~fcBy
c� � �BmBrB�B0

:
c�

~fcBx
c�s� þ ~fcBy

s�s� þ ~fcBz
c� � �BmBrB�B0

:

" #
; ð44Þ

y ¼ �0 �0½ �T ; ð45Þ

´ ¼ 0 0½ �T ; ð46Þ

whereas for w, we set an arbitrary value of wi ¼ 0:0018i. The set of nonlinear

inequalities cðyÞ � 0 is used to ensure that Eq. (36) holds.

Let us rewrite Eq. (35) by considering Eq. (38), such that

~fcBt
¼ ~fcB � ~f

T
cB �n

	 

�n

��� ���; ð47Þ

which can be substituted into the inequality shown in Eq. (36) and squared to get

~fcB � ~f
T
cB �n

	 

�n

��� ���2 � �2 ~f
T
cB �n

	 

2
: ð48Þ

Then, after expanding this expression we have

~f
T
cBn̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~f
T
cB

~fcB
�2 þ 1

s
:¼ �B ; ð49Þ

which can be expressed, for this optimization problem, as

cðyÞ ¼ �B � ~fcBx
c�c� � ~fcBy

s�c� þ ~fcBz
s� � 0: ð50Þ

This inequality represents a circle on the surface of the ball, over which the impact

should occur in order to accomplish the constraint imposed by the coe±cient of

friction.

An e±cient set of initial values for �0 and �0 for the optimization problem is the

one that would be required in case of a direct impact; that is, if we ask for an angular

velocity of !B;0 ¼ 0, which is equivalent to �B0

:
ðtþk Þ ¼ �B0

:
ðtþk Þ ¼  B0

:
ðtþk Þ ¼ 0. In this

case, the impulse is fully described by its normal component, resulting in an easy
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calculation of these initial values, given by

�0 ¼ arctan 2 vOBy ;0; vOBx

	 

; ð51Þ

�0 ¼ �arctan 2 vOBz ;0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v 2
OBx ;0

þ v 2
OBy ;0

q	 

: ð52Þ

5.3. Calculation of the approaching velocity

Assuming that the bodies in contact at the moment of the collision are rigid, the

mathematical theory of rigid body collisions can be used: when two rigid bodies

collide, the relationship between the normal velocities of both at the contact point

(pc) just before and after the impact can be expressed by16,20,22:

¢vcB �¢vcR
� �

T �n ¼ � 1þ eð Þ vcB � vcR
� �

T �n: ð53Þ

where e is the coe±cient of restitution (CoR) between the ball and the swing foot,

and vcB , vcR stand for the velocities of the point pc on the ball and on the foot (the

operational point), respectively. The increments of velocities ¢vcB and ¢vcR are

calculated by means of the results shown in Eqs. (27) and (31), respectively, and the

corresponding Jacobians, as

¢vcB ¼ JB;c;v¢ _qB

¼ JB;c;vM
�1
B JT

B;c;v
~fcB ; ð54Þ

¢vcR ¼ �JR;c;v¢ _�qR

¼ �JR;c;v �M
�1
R

�J
T
R;s

~fsR

~¿sR

" #
� �JR;c;v �M

�1
R

�J
T
R;c;v

~fcB : ð55Þ

But also, a similar relationship applies for the sole of the foot, given by

¢vsR

¢!sR

" #
¼ �JR;s¢ _�qR

¼ �JR;s �M
�1
R

�J
T
R;s

~fsR

~¿sR

" #
� �JR;s �M

�1
R

�J
T
R;c;v

~fcB : ð56Þ

Let us assume that the relative motion between the sole of the foot and the ground

produced by the impact is negligible, and that �JR;s is not singular. Then, from

Eq. (56) we approximate

�M
�1
R

�J
T
R;s

~fsR
~¿sR

" #
� �M

�1
R

�J
T
R;c;v

~fcB ; ð57Þ

and substitute into Eq. (55) to get

¢vcR � 0: ð58Þ
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Substituting these expressions into Eq. (53) and assuming that the ball is origi-

nally steady we compute the normal component of vcR , vcRn ; that is, the desired

normal approaching velocity of the operational point, as

vcRn
¼ vT

cR�n

¼
~f cBn

1þ e
�nTYB�n þ

~f cBt

1þ e
�nTYB

�t; ð59Þ

where ~f cBn
and ~f cBt

are the normal and the tangential components of the impulse

and YB is the mobility matrix of the ball, given by

YB ¼ JB;c;vM
�1
B J T

B;c;v: ð60Þ

In order to calculate the tangential component of vcR , vcRt
, it is necessary to

consider that the ball slides at the beginning of the impact, accelerating its angular

motion until the ball starts rolling. If Eq. (36) holds,26 the ball starts rolling without

sliding before the impact ends. It means that the contact points on both the foot and

the ball should be moving with the same velocity (no relative motion) at the end of

the impact. As ¢vcR � 0, as seen in (58), vcR will be approximately the same at the

end of the impact, then

vcRt
¼ vT

cR
�t ¼ ¢vT

cB
�t

¼ ~fcBn
�nTYB

�t þ ~fcBt
�tTYB

�t: ð61Þ

In this way we can calculate the required approaching velocity of the operational

point on the foot at the instant of the impact as

vcR ¼ vcRn
�n þ vcRt

�t: ð62Þ

But this velocity depends on

�nTYB�n ¼ m�1
Bnn
; �tTYB

�t ¼ m�1
Btt
; �nTYB

�t ¼ �m�1
Bnt

; ð63Þ

that is, the corresponding inverse of the e®ective mass perceived at the contact point

in response to the application of the impulse along each axis, or interaction between

axes.27 These ones are constant values, calculated as

m�1
Bnn

¼ m�1
B ; m�1

Btt
¼ m�1

B 1þ ��1
� �

; m�1
Bnt

¼ 0: ð64Þ

6. Humanoid Con¯guration During the Impact

This section describes our proposed approach for de¯ning a con¯guration for the

humanoid robot at the instant of the impact. Let us de¯ne three frames: fSupg, fCg
and fSwgg, rigidly attached to the support foot, the waist and the swinging foot of

the robot, respectively, as depicted in Fig. 6. By knowing the initial position of the

ball, pOB ;0, and the impact coordinates, ð�0; �0Þ, we can calculate the contact point
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described in the world frame, pc, as

pc ¼ pOB ;0 � rB�n: ð65Þ

Then, by proposing for the humanoid robot: (i) the attitude of the support foot,

ðpOSup
;RSupÞ, (ii) the attitude of the waist at the instant of the impact,

ðpOC
ðtkÞ;RCðtkÞÞ, (iii) the operational point on the swing foot described in fSwgg,

SwgpcR (Fig. 7), along with the orientation of this foot also at the instant of the

impact, RSwgðtkÞ, and (iv) the con¯guration of all the remaining kinematic chains

(trunk, head and arms), we can calculate the robot's con¯guration qR at tk by solving

its inverse kinematics problem.

The attitude of these links can be chosen arbitrarily, as long as the resulting

con¯guration of the robot be feasible and dynamically stable. However, for the swing

foot some remarks should be considered. Ideally, any point on the swing foot could be

chosen as the operational point for the impact. But, as it is mentioned in Sec. 5.1,

there is a close relationship between the chosen operational point and the orientation

of the swing foot: the tangent to the surface of the foot at the operational point

should coincide with the tangent to the surface of the ball at the contact point; that

is, the normal vector to the surfaces of both objects at the contact point should have

Fig. 7. Description of the operational point in the swinging foot frame fSwgg.

Fig. 6. Frames of the robot used to describe its con¯guration.
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the same orientation. Let us select a feasible operational point leading to a minimum

change in orientation for the foot in order to meet the requirement stated above, by

means of the procedure explained in the following.

Suppose that we have a 3D model of the swing foot represented as a polygonal

mesh and described as a graph structure M ¼ ðT ;VÞ. This one consists of a set of

vertices, V ¼ fSwgpv1 ; . . . ;
SwgpvV g, Swgpvi 2 R3, and a set of triangular faces con-

necting them, T ¼ f¡1; . . . ;¡Tg, ¡i 2 V � V � V, where every vertex is described in

fSwgg.28 As an example, the 3D model of the foot of the HRP-2 humanoid robot is

depicted in Fig. 8. After heuristically selecting the triangles composing the mesh that

are feasible for kicking the ball, Tkick 	 T , we calculate the centroid Swgc¡i
and the

unitary normal vector Swg�n¡i
of each triangle ¡i 2 Tkick, as shown in Fig. 9.

After representing each normal vector in the world reference frame, we compute

the angle between each �n¡i
and the normal vector n̂ calculated in Eq. (37), in order

to ¯nd the triangle ¡sel whose orientation is the most similar to the tangent plane at

the contact point on the surface of the ball; that is,

¡sel ¼ arg min
¡i2Tkick

arccos �nT
¡i
�n

� �
: ð66Þ

The centroid of this triangle ¡sel,
Swgc¡sel

, is chosen as the operational point,
SwgpcR , whereas the orientation of the foot is calculated such that its normal vector,

�n¡sel
, coincide with the direction of �n. For that purpose, let us describe the orien-

tation of the swing foot by using a set of orientation coordinates (Euler angles)

following the Euler ZYX convention, ð�Swg; �Swg;  SwgÞ, upon which RSwg is built.

During the impact, at t ¼ tk , RSwg;k(�Swg;k ; �Swg;k ;  Swg;k) is calculated as:

�Swg;i ¼ arctan 2ð�ny�nxÞ � arctan 2ð�n�sely�n�selxÞ; ð67Þ
�Swg;i ¼ arccosð�nzÞ � arccosð�n�selzÞ; ð68Þ
 Swg;i ¼ 0: ð69Þ

(a) (b)

Fig. 8. The 3D model of the foot of the HRP-2 represented as: (a) a solid object and (b) a wireframe.
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7. Kicking Motion Planning

The function shown in Algorithm 1 implements all the processes described until now

by specifying as input parameters the initial conditions of the robot and the ball, as

well as the goal speci¯cations, and returning the required impact conditions: the

impact point, pc, the selected operational point, SwgpcR , the orientation of the foot at

the instant of the impact, RSwg;k, and the approaching velocity, vcR .

Then, once this velocity is known, it is possible to propose a suitable 3D trajectory

satisfying some speci¯c position/velocity values at the instant of the impact. This

can be accomplished by shaping the trajectory with cubic B-spline curves, as these

ones have superb properties: (i) the curve is contained entirely inside of the convex

hull of its control polyline and (ii) the curve can be locally controlled.29

7.1. Definition of the cubic B-spline

A cubic B-spline curve made up of n segments, siðuÞ, and delimited by n þ 1 knots,

pi , is governed by n þ 3 control points, qi.
30 This curve is de¯ned as a weighted sum

Fig. 9. The 3D model of the foot showing the triangles that were heuristically selected (the dark ones), as
well as the unitary normal vector of each one placed at the corresponding triangle's centroid.

Algorithm 1 Function for computing the required impact conditions
function Impact Conditions(initial conditions and goal)

vOB,0 ⇐ Ball Trajectory(pOB ,0, pG) Projectile motion
(φ0, θ0, f̃cB ) ⇐ Applied Impulse(vOB,0, ωB,0) Impact coordinates and

impulse
pc ⇐ Contact Point(pOB,0, φ0, θ0)
SwgpcR , RSwg,k ⇐ Swg Foot Config(φ0, θ0, f̃cB ) Select operational

point
vcR ⇐ Approaching Velocity(e, mB, ρB, φ0, θ0, f̃p)
return pc,

SwgpcR , RSwg,k, vcR

end function
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of its control points, such that

siðuÞ ¼
X1
j¼�2

bjðuÞqiþj ; 8i ¼ 1; . . . ; n;

b ¼ b�2 b�1 b0 b1½ � ¼ 1

6
u 3 u 2 u 1½ �

�1 3 �3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

2
66664

3
77775: ð70Þ

Also, u ¼ ½0; 1� in order to achieve C 1 continuity; that is, sið1Þ ¼ siþ1ð0Þ and

s 0
ið1Þ ¼ s 0

iþ1ð0Þ. This parameter u can be scaled in time, by doing u ¼ t=� , where

t ¼ ½0; � � and � is the time required to travel one segment. Then, traveling a curve

made up of n segments requires a total time Ts ¼ n� . The extreme points of each

segment (the knots) are calculated by

pi ¼
1

6
qi�1 þ 4qi þ qiþ1ð Þ; 8i ¼ 0; . . . ; n; ð71Þ

while the velocities at these extreme points are given by

vi ¼
1

2�
ðqiþ1 � qi�1Þ; 8i ¼ 0; . . . ; n: ð72Þ

This cubic B-spline is an approximating curve. Its shape is determined by its

control points, qi, but the curve itself does not pass through those. Instead, it passes

through the knots, pi .
30 By using Eqs. (71) and (72) it is possible to interpolate a set

of n þ 1 data points, p0; . . . ;pn, with a curve made up of n segments, which starts

and ends with given velocities v0 and vn.
30 Rearranging Eqs. (71) and (72) into a

matrix form we get

A q�1 q0 � � � qn qnþ1½ �T ¼ v0 p0 � � � pn vn½ �T ; ð73Þ

where A 2 Rðnþ3Þ�ðnþ3Þ is given by

A ¼ 1

6

�3=� 0 3=� � � � 0 0 0

1 4 1 � � � 0 0 0

0 1 4 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 4 1 0

0 0 0 � � � 1 4 1

0 0 0 � � � �3=� 0 3=�

2
666666666664

3
777777777775
; ð74Þ

and � is calculated by dividing the total time Ts by the number of segments in equal

parts; that is, � ¼ Ts=n. This coe±cient matrix is non-singular and therefore Eq. (73)

has a unique solution.
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7.2. Trajectory planning

By using cubic B-splines we can now construct a trajectory for the swing foot, in

order to take the operational point de¯ned on it from an initial position to a ¯nal one

while passing by the desired contact point on the ball with the required approaching

velocity. Although there are many ways to achieve this motion, generally it will be

divided into two phases,31 each one described with a di®erent cubic B-spline: (i) the

swing phase which detaches the foot from the ground (with an initial zero velocity)

and drives the operational point from its initial position, pcR;0, to the contact point,

pc, with the required velocity, vcR , and (ii) the follow-through phase which drives the

operational point on the foot moving with a velocity vcR from the contact point, pc,

to the ¯nal landing position (with zero velocity).

The landing position can be chosen arbitrarily as long as it is inside of the robot's

workspace. We arbitrarily chose it to be the same as the initial one. Then, for each

cubic B-spline we know already the extreme points of every segment and the ve-

locities that should be attained at these ones. In addition, to have a better control of

the curve we propose to add an auxiliary knot to each phase, paux , manually tuned to

avoid hitting the °oor, the support leg or the ball (before the desired instant of

impact). See Fig. 10.

It is worth to mention that sometimes the required trajectory may not be con-

tained inside of the corresponding workspace, unless we shorten the time span Ts of

each phase. However, this action may lead to trajectories that are not feasible on a

real robot. In general, a shorter time span will lead to shorter curves, so that they can

¯t in the workspace. However, it implies that the foot will reach the desired velocity

in a shorter time; that is, they will require higher acceleration values and conse-

quently, a higher joint torque, which may be physically impossible to achieve by

using the actuators of a real robot.

8. Stabilization

Once the trajectory for the foot is decided and the leg motion is produced, the robot

should maintain its stability while this motion is being performed. This can be done

by moving the waist of the robot horizontally (or its upper limbs) such that the zero

moment point (ZMP) remain inside of the polygon of support.32 In this work, we used

Rcv
cp

auxp

Rc ,0p

Fig. 10. Proposed trajectory for the operational point as seen on the sagittal plane. The darker trajectory

corresponds to the swing phase, whereas the lighter one to the follow-through phase.

R. Cisneros, K. Yokoi & E. Yoshida

1650003-22



the method proposed by Nishiwaki et al. to generate a waist trajectory capable of

stabilizing the robot's motion.33–35

Let the motion of the humanoid robot be characterized by the trajectory of its

COM, pcm , and its linear and angular momenta about the origin of the world ref-

erence frame (OW ), PR and LR;OW
, respectively. The ZMP for this motion,

pzm ¼ ½pzmx
pzmy

pzmz �T , considering pzmz
¼ 0, is calculated as

pzmx
¼

~pcmx
~mRg � L

:
Ry ;OW

~mRg þ _Pz

; pzmy
¼

~pcmy
~mRg þ L

:
Rx ;OW

~mRg þ _Pz

; ð75Þ

where mR is the total mass of the robot and g is the acceleration due to gravity.

However, in order to use the method of Nishiwaki et al., it is ¯rst necessary to assume

a simpli¯ed model of the robot, regarding it as a single point mass located at �pcm .33

Here, the upper \bar" is used to distinguish the corresponding variables from the

ones of the multi-body model. This method assumes that the vertical motion of this

point is known, i.e., �pcmz
, �p
:
cmz

and �p
::
cmz

are known. Then, it is just necessary to

calculate the horizontal motion, �pcmx
and �pcmy

, capable to attain a desired ZMP.

The corresponding linear and angular momenta for this model are given by

�PR ¼ ~mR
_�pcm ; ð76Þ

�LR;OW
¼ �pcm � ~mR

_�pcm : ð77Þ

These ones can be substituted in Eq. (75) to get

�pzmx
¼ �pcmx

�
�pcmz

�p
::
cmx

�p
::
cmz

þ g
; ð78Þ

where we have considered only the x-component (a similar procedure applies for the

y-component). Let us discretize the horizontal acceleration of the single point mass

by considering a sampling time �t:

�p
::
cmx ;i ¼

�pcmx ;i�1 � 2�pcmx ;i þ �pcmx ;iþ1

�t 2
; ð79Þ

where �pcmx ;i :¼ �pcmx
ði�tÞ and i ¼ 1; . . . ; n with n being the total number of samples

of the trajectory. Also, it is assumed that �pcmx ;�1 ¼ �pcmx ;0 and �pcmx ;nþ1 ¼ �pcmx ;n.

Using this approximation, the discretized ZMP equation is expressed as

�pzmx ;i ¼ ai �pcmx ;i�1 þ bi �pcmx ;i þ ci �pcmx ;iþ1; ð80Þ

where the coe±cients ai, bi and ci are calculated as:

ai ¼ ci ¼ ��pcmz ;i=½ð�p
::
cmz ;i þ gÞ�t 2�; ð81Þ

bi ¼ 2�pcmz ;i=½ð�p
::
cmz ;i þ gÞ�t 2� þ 1: ð82Þ

Let us notice that the same coe±cients ai, bi and ci apply for �pcmx ;i or �pcmy ;i.
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Now, let us de¯ne �p 0
cm;i ¼ ½ �pcmx ;i �pcmy ;i �T and �p 0

zm;i ¼ ½ �pzmx ;i �pzmy ;i �T . Then, it is
possible to rearrange Eq. (80) in matrix form to get:

�p 0
zm;1 � � � �p 0

zm;n

� �
T ¼ A �p 0

cm;n � � � �p 0
cm;n

� �
T ; ð83Þ

�p 0
zm;all ¼ Að �p 0

cm;allÞ; ð84Þ

where A 2 Rn�n is given by

A ¼

a1 þ b1 c1 � � � 0 0

a2 b2 � � � 0 0

..

. ..
. ..

. ..
.

0 0 � � � bn�1 cn�1

0 0 � � � an bn þ cn

2
6666664

3
7777775
: ð85Þ

This coe±cient matrix is non-singular and therefore Eq. (84) has a unique solu-

tion. A is a huge square matrix consisting of several thousands of rows and columns,

given that n is the total number of samples taken for a certain motion. Still, it is a

tridiagonal matrix whose elements are all zeros except of its main diagonal and the

adjacent diagonals. For such a matrix, there is an e±cient algorithm to compute its

inverse, reported in Ref. 36. The result, however, is just an approximation.

Let us suppose that we have de¯ned an arbitrarily preliminary trajectory for the

waist of the robot that ensures static stability but not dynamic one. Then, the

trajectory for the ZMP corresponding to the actual motion of the multi-body model,

pzm , can be calculated by using Eq. (75), discretized by considering a sampling time

�t, such that all the samples be arranged in matrix form as

pzm;all ¼ pzm;1 � � � pzm;n

� �
T : ð86Þ

Let us arbitrarily specify a desired ZMP trajectory, discretized in the same way,

pd
zm;all , which ensures the dynamic stability of the multi-body model. The error

between the desired ZMP trajectory and the one for the actual motion is given by

ezmp;all ¼ pd
zm;all � pzm;all : ð87Þ

By using this error in place of the approximated ZMP trajectory for the single

point mass shown in Eq. (84), we can calculate the horizontal variation of the CoM

capable of compensating the ZMP error as

¢pcm;all ¼ A�1ezmp;all ; ð88Þ

whereA is calculated by using the actual values of pcmz ;i and p
::
cmz ;i of the multi-body

model. Then, the trajectory for the CoM is updated as

pnew
cm;all :¼ pold

cm;all þ¢pcm;all : ð89Þ

However, the trajectory for this point cannot be directly manipulated as it is the

result of the con¯guration of the robot evolving in time. Still, it is possible to
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approximate the horizontal variation of the CoM to the horizontal variation of the

waist position, ¢pnew
OC ;all

� ¢pnew
cm;all , and repeat this process iteratively until the

ZMP error becomes small enough (typically only two iterations are necessary to

produce a good approximation); that is,

pnew
OC ;all :¼ pold

OC ;all þA�1ezmp;all : ð90Þ

The function shown in Algorithm 2 implements this process by specifying as

input parameters the discretized trajectories for: the preliminary waist attitude

ðpold
OC

½i�;RC ½i�Þ, all the joint angles of the robot qR½i� and the desired ZMP pd
zm ½i�,

and returning an updated waist position trajectory, pnew
OC

½i�, that attains the desired
one for the ZMP with enough precision. The complete algorithm for kicking the ball

is shown in Algorithm 3.

9. Simulation and Experimental Results

In order to assess the validity of our approach we simulated a set of kicking motions

performed by the HRP-2 humanoid robot on a regular volleyball. The motion of the

ball after the impact was analyzed in every case, and compared to the desired one, in

order to statistically evaluate the performance of the proposed algorithm. These

analyses are reported in Sec. 9.1.

Having done this, one kicking motion is taken into consideration to be tested on

the real robot, and also simulated for e®ects of comparison and detailed analysis.

This one is reported in Sec. 9.2.

Algorithm 2 Function for computing a stable waist trajectory
function Balancer(pold

OC
[i], RC [i], qR[i], pd

zm[i])
pnew

OC
[i] ← pold

OC
[i]

for j ← 1, 2 do
(pzm[i], pcm[i], p̈cm[i]) ⇐ Calc Dyn(pnew

OC
[i], RC [i], qR[i])

Actual COM and ZMP
ezmp[i] ← pd

zm[i] − pzm[i] ZMP error
(a[i], b[i], c[i]) ⇐ Calc Coefficients(pcmz [i], p̈cmz [i], ∆t)

Coefficients’ calculation
∆pOC [i] ⇐ Tridiag(a[i], b[i], c[i], ezmp[i]) Calculation of A−1ezmp,all

pnew
OC

[i] ← pnew
OC

[i] + ∆pOC [i] Update values
end for
return pnew

OC
[i]

end function
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9.1. Set of simulation experiments

The humanoid robot HRP-2 is 1.539m height and weighs 58 kg (Fig. 11(a)).37 It has

30 dof: six in each leg, six in each arm, one in each hand, two at the waist and two at

the neck, arranged as shown in Fig. 11(b).

In order to simulate the kicking motion we used the parameters for the volleyball

reported in Table 1. These ones are based on a real ball available in the laboratory.

The radius (rB) and the mass (mB) were directly measured, while the construction

coe±cient (�B) was estimated, supposing that it may be similar to a tennis ball, given

that both are formed by layers.23 The coe±cient of friction (�) between the foot and

the ball is arbitrarily considered to be small, given the slippery interaction between

the corresponding surfaces. Finally, the CoR (e) was directly measured by using the

bouncing height of the ball over the frontal surface of the foot, maintained as hori-

zontal as possible. The ball is initially located over the origin of the world reference

frame, such that for its initial position we have pOB ;0 ¼ ½ 0 0 rB �T .
Let us place the humanoid robot in such a way that while standing in its reference

con¯guration its cardinal sagittal plane be parallel to the XZ-plane of the world

reference frame, and its swing foot before detaching be �0.35m behind the ball. This

distance was heuristically selected given that it allowed more kicking trajectories to

be feasible. Also, the height of the waist was heuristically selected (pOCz
¼ 0:6m), a

little bit lower than in its reference con¯guration to increase the workspace of the

swing leg but not so low to demand so much torque from the knee. These parameters,

reported in Table 2, lead to the setup shown in Fig. 12.

Then, a set of motions was designed by specifying seven parameters, six of them

related to the desired 3D goal and angular velocity of the ball and one related to the

Algorithm 3 Impulsive pedipulation algorithm
Require: Ball information, robot information and CoR(e)
Require: Initial ball position pOB [0] and initial robot configuration qR[0]
Require: Goal position of the ball pG, reaching angle θm,f and angular velocity

ωB,0 = ωB,f

Require: Kicking time tk and sampling ∆t

Generate temporal waist position trajectory pold
OC

[i]
Generate desired ZMP pd

zm[i]
(pc, vcR , SwgpcR , RSwg,k) ⇐ Kick Conditions(initial ones and goal)

Contact point, approaching velocity, operational point and foot orientation
See Algorithm 1

(pcR [i], RSwg[i]) ⇐ Foot Attitude Trajectory(pc, vcR , SwgpcR , RSwg,k)
qR[i] ⇐ Inverse Kinematics(pold

OC
[i], RC [i], pcR [i], RSwg[i])

pnew
OC

[i] ⇐ Balancer(pold
OC

[i], RC [i], qR[i], pd
zm[i]) Stabilizer

See Algorithm 2
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kicking trajectory: the time span for performing the swing phase of the kicking

motion, Tswing. These parameters are listed in Table 3 together with the tested

values. Each motion was de¯ned by varying only one parameter. This means that for

the test bench shown 840 di®erent motions can be generated. However, not all of

them are feasible for ¯ve principal reasons: (i) the swing foot leaves the corresponding

workspace in at least one point of the trajectory, (ii) at some point of the produced

kicking trajectory the sole of the foot (the rear end or the front end) collides with

the °oor, (iii) the swing foot collides against the support leg (self-collision), (iv) the

(a) Real robot. (b) Structure.

Fig. 11. HRP-2 humanoid robot.

Table 1. Volleyball parameters.

Radius(r) 0.099m

Mass(mB) 0.25 kg

Construction coe±cient(�) 0.535
CoR(e) 0.84

Coe±cient of friction(�) 0.07

Table 2. Initial robot parameters.

Support ankle position (pOSup
) ½ �0:35; �0:19; 0:105 �T m

Initial waist position (pOC ;0) ½ �0:35; �0:095; 0:6 �T m

Initial swing ankle position (pOSwg ;0) ½ �0:35; 0:0; 0:105 �T m
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produced joint trajectories are not completely inside of the joint limits, or (v) the

joint velocities surpass the corresponding maximum values. These limitations se-

verely reduce the feasible set of motions. Still, in order to evaluate the algorithm and

take advantage that in simulation we can ignore the last three cases, we will drop the

motions not complying with the ¯rst two: when the inverse kinematics fail or when

the swing sole fails to clear the °oor by at least 0.01 m. In this way, 149 feasible

motions were produced by computing in each case the joint trajectories of the robot

and a desired ZMP reference trajectory.

Each motion was simulated by using OpenHRP3,38 an integrated simulation

platform capable of performing realistic dynamic simulations and that was previ-

ously improved to include the capacity of simulating the ball dynamics.39 The virtual

model of HRP-2 implements the same controller built in the real robot, as well as the

dynamical e®ect of its impact absorption mechanism consisting of rubber bushes and

dampers. In this way, it behaves closely to the physical platform with the advantage

of having control of the physical properties of the environment.

Fig. 12. Setup for the set of kicking motions.

Table 3. Test bench parameters.

Swing phase time span (T d
swing) [s] 0.7, 1.0

Ball's yaw velocity (�
: d
B0) [


/s] 0

Ball's pitch velocity (�
: d
B0) [


/s] 0

Reaching angle (�dm;f ) [

] �15, �10, �5, 0

Goal's frontal distance (pd
Gx
) [m] 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0

Goal's lateral distance (pd
Gy
) [m] �0.2, 0.0, 0.2

Goal's height (pd
Gz
) [m] 0.1, 0.2, 0.3, 0.4, 0.5
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OpenHRP3 is able to release as output data the sequence of positions and orientations

for any object of the virtual world (the ball or any link), as well as the joint values for

the robot and the sequence of readings of each sensor. The sequence of positions of the

ball for each kicking motion was analyzed in Matlab, from which the attained goal

position, ps
G, could be calculated. This one was taken at the moment in which the

centroid of the ball crossed the goal plane. Here, the superscript s stands for each

\simulated" value, whereas d will be used for the \desired" one. The remaining tra-

jectory parameters were calculated by means of a curve ¯tting process, by assuming a

¯xed quadratic coe±cient (� 1
2 g) for the Z -component. In this way, it was possible to

calculate a very accurate value for the initial linear velocity vs
OB ;0

, described by its

components v s
OB ;0

, � s
m and � sm;0, as well as the reaching angle �m;f , by using Eq. (6).

The attained goal position was compared with the desired one by computing the

goal position error, considered as epG ¼ jjps
G � pd

Gjj. Then, every error (in meters or

in terms of the radius of the ball, rB) was assigned a grayscale code according to

Fig. 13 and plotted at the desired goal position, pd
G. The interpolated results are

shown in Figs. 14 and 15. These ¯gures show the goal position errors grouped by

blocks with respect to the desired reaching angle, �dmf ¼ f�15;�10;�5; 0g
, and in

columns with respect to the time span for the swing phase, Tswing ¼ f0:7; 1:0g. Then,
each block shows the results plotted in di®erent grayscale maps, corresponding to

each desired height, pd
Gz . Each grayscale map represents the accuracy attained

at each XY -coordinate, represented by pd
Gx and pd

Gy . Notice that only the heights

that were feasible for producing the kicking motion are shown. For example, by

considering �dmf ¼ �15
 only the grayscale maps for pd
Gz

¼ 0:1 are shown, as with

that reaching angle attaining other heights implied a collision of the kicking foot

against the °oor. On the other hand, by considering �dmf ¼ 0
 no grayscale map for

pd
Gz

¼ 0:1 is shown. This is due to the fact that if the center of the ball is at that

height, its lower part is almost touching the °oor. Then, the required approaching

velocity would be so big that the foot would have to travel a large trajectory to reach

an almost in¯nite velocity to hit the ball horizontally.

The goal position error, analyzed in terms of the radius of the ball rB , gives a

practical insight of the accuracy of the results. Let us calculate the percentage of the

experiments that were successful, where the success depends on hitting a target

whose size is less than 0.5rB, rB , 1:5rB or 2rB . The results are shown in Table 4,

grouped with respect to the time span Tswing. The accuracy of the reaching angle can

be analyzed by calculating the corresponding mean values (�� s
m;f
) and standard

deviations (	� s
m;f
) obtained in simulation for each desired value of the angle and also

grouped with respect to Tswing. The results are shown in Table 5.

0.20 m ( 2rB) 0.10 m ( rB) 0.0 m0.05 m ( 0.5 rB)0.15 m ( 1.5rB)

Fig. 13. Grayscale code for representing the accuracy attained for the set of experiments.
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As can be seen from Table 4, the larger the time span for the swing phase is, the

larger the probability of success becomes. However, even with a short time span, the

percentage of complete failure is less than 10%. On the other hand, by taking a look

to Table 5 it seems that there is not any obvious statistical in°uence of Tswing on the

achieved reaching angle.

Every goal position, together with a reaching angle, requires a di®erent initial

linear velocity vector vOB ;0, making it not feasible to evaluate for each desired value

as in the previous cases. Instead, let us evaluate the errors regarding to its magnitude

(evOB ;0
¼ v s

OB ;0
� v d

OB ;0
), to its azimuthal angle (e�m ¼ � s

m � �d
m) and to its launch

angle (e�m;0 ¼ � sm;0 � �dm;0) by means of their corresponding statistical values,

grouped by the time span for the swing phase Tswing in order to evaluate its in°uence

on the results. These ones are shown in Table 6 and, as can be seen, it seems that the

larger Tswing is, the more the standard deviation of each error decreases; that is, the

kicking motion is more precise.

9.2. Single experiment analysis

Let us slightly modify the experimental setup as shown in Fig. 16, by adding a disk

between the ball and the °oor, as well as a goal frame (detailed in Fig. 17).

Fig. 14. Accuracy attained at each pG for �dm;f ¼ f�15;�10g
 and Tswing ¼ f0:7; 1:0g s.
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Fig. 15. Accuracy attained at each pG for �dm;f ¼ f�5; 0g
 and Tswing ¼ f0:7; 1:0g s.

Table 4. Percentages of the N experiments for those that hit the

target pd
G within each tolerance.

Tolerance of error Tswing ¼ 0:7 s, N ¼ 100 Tswing ¼ 1:0 s, N ¼ 49

�0:05m (�0:5r) 30.0% 42.9%
�0:10m (�r) 58.0% 69.4%

�0:15m (�1:5r) 75.0% 89.8%

�0:20m (�2r) 92.0% 100.0%
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Table 5. Statistical values for the reaching angles � sm;f obtained in simulation.

Desired reaching angle Tswing ¼ 0:7 s (N ¼ 100) Tswing ¼ 1:0 s (N ¼ 49)

�� s
m;f

	� s
m;f

�� s
m;f

	� s
m;f

�15
 �20.3
 4.2
 �22.7
 4.7


�10
 �14.4
 4.1
 �15.2
 3.9


�5
 �6.6
 3.9
 �7.3
 3.2


0
 �0.2
 3.8
 �1.7
 2.9


Table 6. Statistical values for the errors in velocities obtained in simulation.

Error in velocity Tswing ¼ 0:7 s (N ¼ 100) Tswing ¼ 1:0 s (N ¼ 49)

�e 	e �e 	e

ev s
OB ;0

�0.38m/s 0.75m/s �0.40m/s 0.54m/s

e� s
m

�1.9
 2.5
 �1.2
 1.5


e� s
m;0

1.4
 5.1
 0.0
 4.2


Fig. 16. Setup for the single experiment.

Fig. 17. Goal frame dimensions.
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The mentioned disk was required in the real experiment to make it easier to place

the ball at the desired XY -location. However, it raised the ball's initial height, such

that for its initial position we have pOB ;0 ¼ ½ 0 0 ðrB þ 0:016mÞ �T , which was also

considered in calculations and in simulation.

The parameters used for this kicking motion are shown in Table 7. These were

speci¯cally chosen to produce a motion inside of the corresponding workspace and to

comply with the joint limits and the maximum joint velocities of the robot.

The desired goal position was marked out by using a goal frame over a hurdle of

0.02m height, creating a narrow space of 0.26m width centered at this goal position,

that should be traveled through by the ball, whose diameter is almost 0.2m; that is,

with a margin of 0.03m for each side of the ball (Fig. 17). By including a hurdle at the

goal position, the desired arrival condition of the ball to the goal was forced to be a

requirement, as the ball would not be able to enter to the goal without attaining the

desired height (within 0.01m of margin). It is worth to mention why the goal position

is very near to the robot. This is because the joint velocities required for farther 3D

goals were surpassing the current maximum joint velocities. Also, it is worth to

remark that the ball's pitch velocity (�
: d
B0) is given a value of�100
/s. This is because

in the case of �
: d
B0 ¼ 0, the required approaching velocity vector was inducing a

trajectory for the swing foot in which the sole was colliding with the ground. By

switching it to �100
/s, this vector turned to be less steeper, rising, in this way, the

lowest point of the trajectory of the sole of the swing foot.

After calculating the desired impulse and the impact coordinates, an operational

point on the swing foot is selected together with the foot's orientation at the moment

of the impact. Then, the approaching velocity is calculated. These calculations,

together with the speci¯cations of the task, are used to de¯ne the trajectory of the

operational point and the swing foot. The desired trajectory for the operational point

is shown in Fig. 18.

On the other hand, the trajectory for the horizontal position of the waist is at ¯rst

proposed to shift horizontally from the reference con¯guration to be placed exactly

over the support (left) ankle position, and let it remain there until the motion

¯nishes. Then, it shifts back to the original position at the end of the kicking motion.

However, this trajectory does not ensure dynamic stability. By following the iterative

Table 7. Parameters for the single experiment.

Swing phase time span (T d
swing) [s] 1.3

Ball's yaw velocity (�
: d
B0) [


/s] 0

Ball's pitch velocity (�
: d
B0) [


/s] �100

Reaching angle (�dm;f ) [

] �15

Goal's frontal distance (pd
Gx
) [m] 0.4

Goal's lateral distance (pd
Gy
) [m] 0.05

Goal's height (pd
Gz
) [m] rB+0.03
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process described in Sec. 8, and after two iterations, we get a balancing motion

trajectory for the waist that almost ¯xes the trajectory for the ZMP as desired; that

is, exactly under the left ankle throughout the duration of the kicking motion. The

calculated trajectory for the waist is depicted in Fig. 19, compared to the proposed

one (the initial condition of the iterative process).

In order to compute this trajectory, a delay of 2 s was originally considered at the

beginning and at the end of the kicking motion, followed by the motion of the waist

that transfers the ZMP to a position below the left ankle, which lasts 1 s; that is, the

kicking motion actually starts at t ¼ 3 s, in such a way that the instant of the impact

occurs 1.3 s later, at t ¼ 4:3 s, as it is marked in Fig. 19. The sampling time is

�t ¼ 0:005 s. The obtained ZMP trajectory is depicted in Fig. 20, compared to the

desired one. However, as we can see, the di®erence between these signals is extremely

small and practically negligible, given that the mean error between them was

1� 10�6 m, achieved with only two iterations.

The whole calculation lasted approximately 65 s, by using non-optimized Matlab

code and running on a Laptop PC with Intel(R) Core(TM) i7-2670QM CPU @

2.20GHz, 8GB of RAM and Windows 7 (64-bit).

This kicking motion was simulated in OpenHRP3,38 as well as tested with the real

robot. The resulting simulated motion is shown through a selection of frames in

Fig. 21, as seen on the sagittal and frontal planes, respectively, and labeled with the

(a) XZ -plane. (b) XY -plane.

Fig. 18. Desired operational point's trajectory.

(a) Position in X (m). (b) Position in Y (m).

Fig. 19. Proposed waist trajectory (gray) versus computed one after the iterative process (black).
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(a) Position in X (m). (b) Position in Y (m).

Fig. 20. Desired ZMP trajectory (gray) versus attained one after the iterative process (black).

Fig. 21. Simulated kicking motion as seen on the sagittal and the frontal planes.
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corresponding simulation timestamp. At the beginning of the simulation the robot

has a prede¯ned con¯guration. This one evolves to the desired initial one in 3.750 s.

Then, the robot transfers the ZMP to a position under the left ankle, such that the

kicking motion starts at t ¼ 5:250 s. The foot makes contact with the ball at

t ¼ 6:572 s; that is, T s
swing ¼ 1:322 s instead of 1.3 s, as it was planned. This is at-

tributed to the following error of the controller. The ball starts its motion exactly

after the impact, hitting the hurdle at t ¼ 6:733. Figure 22 shows a closer view of the

ball motion, where it can be seen that the ball succeeds to enter into the goal frame.

The same kicking motion was also performed by the real robot. This one is shown

through a selection of snapshots of the video taken during the experiment on Fig. 23,

labeled with the corresponding video timestamp; that is, relative to the time that the

video camera started recording. As can be seen, the real kicking motion starts at

t ¼ 8:490 s and the foot makes contact with the ball at approximately t ¼ 9:790 s;

that is, T r
swing ¼ 1:3 s as it was planned. Here, the superscript r stands for a \real"

value (from the actual experiment). The ball arrives to the goal at t ¼ 9:960 s. The

video was carefully taken such that the image plane was as parallel as possible to the

sagittal plane of the robot. In this way, it was possible to estimate the Z -position of

the ball on every frame by measuring distances in the image and relating them to

known real distances, carefully considering the perspective. Then, by means of a

polynomial curve ¯tting process with given initial position (pB0z ) and ¯xed quadratic

coe±cient (� 1
2 g), it was possible to estimate the initial linear velocity vector of the

ball, v r
OB ;0

, and construct the corresponding curve. This one is shown in Fig. 24,

together with the desired one and the simulated one. The considered goal position is

marked as a data-tip at the end of each curve. It is worth to remark that the X-value

for the goal position in those three curves is not exactly 0.4m. This is due to the

sampling time. Also, it is possible to notice that, in fact, during the real experiment

the ball did not hit the hurdle, but it passed over it, almost reaching the desired

position and performing better than in the simulation. Table 8 shows a comparison

between the calculated, the simulated and the real data (that could be measured)

regarding to the motion of the ball.

As there is no collision data released by the simulator, the simulated impact

coordinates � s
0 and � s0 were obtained by using the sequence of positions and orien-

tations of the swing foot, together with the collision detection algorithm developed

by us to search for the ¯rst single collision point on the ball,39 from which the impact

Fig. 22. Simulated ball motion.
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Fig. 23. Kicking motion implemented on the real humanoid robot.

Fig. 24. Desired, simulated and experimental trajectories of the center of the ball.
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coordinates were calculated. The initial linear velocity of the ball as well as the rate of

change of its orientation coordinates were calculated by means of a polynomial curve

¯tting process.

On the other hand, the real (experimental) data cannot be calculated in the same

way, as there is no sensor providing the position and orientation of the swing foot or

the ball. The experimental impact coordinates were estimated by means of ap-

proximate measures taken from the snapshots of the video recorded by a second

camera making a close-up of the feet of the robot. Some of the snapshots are shown in

Fig. 25, particularly showing an instant before the impact, the instant of the impact

itself and an instant after the impact. A ruler behind the robot was used as a

reference measure. The rate of change of the orientation coordinates could not be

measured from the video. The frames in Fig. 25 also show that the support foot has a

negligible motion with respect to the °oor. This validates the hypothesis made in

Eq. (57), which caused the inverse of the e®ective mass of the robot to be neglected

during the computation of the approaching velocity.

Finally, we show the comparison between the desired ZMP trajectory and the

experimental one. These ones are shown in Fig. 26 along with the boundaries of the

foot (in each direction) during the single and the double support phases, as a way to

validate the stability of the motion. Let us point out that the disturbance shown at

Table 8. Comparison of calculated, simulated and real data.

Data Desired (d) Simulated (s) Real (r)

Time span for the swing phase Tswing [s] 1.300 1.322 1.300

Azimuthal impact coordinate �0 7.1 7.5 7.1

Polar impact coordinate �0 �20.5 �20.4 �21.0

Magnitude of v0 (v0) [m/s] 2.70 2.55 2.47

Azimuthal angle of v0 (�m) [

] 7.1 6.5 7.1

Polar angle of v0 (�m0) [

] 18.6 17.3 22.4

Time span to reach the goal (Tgoal) [s] 0.160 0.168 0.170

Reaching angle �m;f [

] �15.0 �20.8 �20.0

Goal's frontal distance (pGx
) [m] 0.400 0.411 0.408

Goal's lateral distance (pGy
) [m] 0.050 0.046 0.050

Goal's height (pGz
) [m] 0.129 0.107 0.127

Ball's yaw velocity (�
: d
B0) [


/s] 0 �65 ���

Ball's pitch velocity (�
: d
B0) [


/s] �100 �59 ���

(a) 9.710 s (b) 9.790 s (c) 9.880 s

Fig. 25. Close-up for the swing foot motion during the real experiment.
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t ¼ 4:3 s is regarded as the e®ect that the collision with the ball had on the robot. As

can be seen, this disturbance is comparable in magnitude to other uncertainties, and

it is not large enough to destabilize the robot.

10. Conclusions and Future Work

In this paper, we presented a method to generate a proper stable motion for a

humanoid robot that has to perform a speci¯c pedipulation task, consisting of driving

a spherical object to a speci¯ed 3D goal position with certain motion characteristics,

by exerting some proper impact conditions. However, the accuracy of the results is

highly dependent on how demanding the task is; that is, on the magnitude and

orientation of the approaching velocity vector that is required to exert the necessary

impact conditions. If the magnitude is so big, the trajectory that the foot has to

follow is longer in order to accelerate from zero velocity to the desired one. This

means that the trajectory of the foot may lie out of the workspace. One solution is to

shorten the time needed to perform the motion, which actually demands a higher

acceleration of the foot and, consequently, higher joint accelerations. On its behalf,

the robot controller may not be able to cope with this trajectory as accurately as

needed, so that the resultant one may induce an error on the impact conditions. With

respect to the orientation of the approaching velocity vector, if it is very steep, the

swing foot would need to go below the ground level to attain the required impact

conditions. One solution is to relax the angular velocity requirements of the pedi-

pulated object, in order to modify the impact coordinates and change the orientation

of the approaching velocity vector. As a consequence, the impact conditions are more

dependent on the friction between foot and ball, and on the tangential component of

this velocity. In general, the farther (and higher) the goal position is, the less accurate

the results are.

The method presented in this paper solved a speci¯c impulsive pedipulation task,

but it can be adapted to any other target object which can be modeled as a rigid

object and for which the physical properties are known, as well as its geometry.

Depending on which task we want to achieve by means of impulsive pedipulation, it

(a) Position in X (m). (b) Position in Y (m).

Fig. 26. Desired ZMP trajectory (dashed) versus experimental one (solid). The boundaries of the foot (in

each direction) during the single support phase are also shown to validate the stability.
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is just the matter to ¯nd the required impulse on the object applied to some oper-

ational point, whose velocity is related to the linear and angular ones of the object by

means of the corresponding Jacobian. Then, the rest of the algorithm (from the side

of the robot) can be worked out in the same way, by planning a dynamic motion

capable to attain the required velocity of the operational point in the foot while

keeping it balanced. Besides that, it is worth to mention that by the way this method

was developed, it is possible to also adapt it to be used for any link of the robot.

As a future work we want to consider strategies for the robot to approach to a

feasible position relative to the spherical object, and even to perform the pedipula-

tion task while a dynamic motion is taking place. For example, kicking the ball while

walking fast without stopping. This can make the kicking motion to look less clumsy

and more natural. But also, this will require acquisition of the relative position of the

initial position of the object by using vision data. Also, we want to consider the case

in which the impact is large enough to produce some signi¯cant motion at the

support foot. This would produce an inverse of the e®ective mass of the robot (in

each direction) not negligible anymore, a®ecting the total momentum transmitted to

the object, as well as compromise the stability of the robot. Finally, we would like to

generate an appropriate movement for the upper body to compensate the vertical

moment induced by the robot's motion, as well as to optimize the algorithm (on

C++) to reduce the computation time and improve the accuracy of the results.
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