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Abstract— The aim of this paper is to develop an algorithm
that enables a humanoid robot to perform an impulsive pedip-
ulation of a spherical object by using its foot, so that the object
reaches a desired 3D goal position, taking into account some
constraints imposed at the moment of the impact. This is done
by planning a suitable motion of the humanoid robot that exerts
the required impact conditions on this object. Then, we take
the free kick in soccer as a case of study that represents one
possible application of this algorithm. Finally, we provide a
simulation example that intends to show its validity.

I. INTRODUCTION

Manipulation, from the Latin manus “hand” plus the root

plere “to fill”, is defined as the sense of skillful handling of

objects by means of the hands, or by any mechanical means.

One of the main purposes of traditional robots is the

manipulation of objects in the environment by means of an

end effector, whose shape and functionality depends highly

on the task it is meant for. Many of them manipulate objects

by grasping them, moving, and then releasing them. Other

types of manipulation (non-grasping) may include the use of

attractive forces (electromagnets, suction pads, etc.) as well

as repulsive forces. Within this last category, some robots

make use of pushing strategies (non-impulsive) to achieve

the desired goal, while others make use of striking strategies

(impulsive), which basically give an initial linear and angular

velocity to the object, which then moves subject to forces and

constraints [1] [2] [3].

Humanoid robots may, or may not have a proper grasping

system for skillfully handling objects, as the focus of most

researchers is the locomotion system. Having this into ac-

count, it is worth to consider the use of repulsive forces for

non-grasping manipulation, by using its hands or feet.

This last skillful handling of the objects could even be

described with the term pedipulation, from the Latin pes

(genitive pedis) “foot”, which would give an extra function-

ality to the locomotion system, as well as an extra challenge:

to keep balance while performing both tasks in the presence

new forces.
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This term has been used previously in the robotics liter-

ature, referring to the footstep planning for a humanoid [4]

and to describe a human or robot foot’s action when it is

used to juggle objects [5], but not in a generalized way if

handling objects with the feet while maintaining balance.

It is then our interest to research on pedipulation, using

non-impulsive or impulsive strategies, as it is not uncommon

in our daily lives, or for actual applications of humanoid

robots, as it is the case of the kicking motion in soccer: one

possible application of this research.

This motion has been previously addressed in works as

[6] [7] [8] [9] [10], but mainly focused in the motion itself

without taking into account the way to achieve a specific

goal. [11] deals with the trajectory of a ball (idealized as a

particle) resulting from a kicking motion, without solving the

inverse problem. This paper deals with this inverse problem

in order to get a feasible kicking motion, such that the ball

considered as a rigid body reaches a specific goal.

II. PROBLEM STATEMENT

Taking the case of soccer as a typical example of impulsive

pedipulation, this work focuses on the free kick performed

by a humanoid robot. The ball should reach a desired 3D

goal position with a desired approaching angle and angular

velocity, considering the constraints imposed by the impact’s

nature. In order to solve this problem we propose the

algorithm shown in Fig. 1 and explained as follows:

1) Given the 3D goal position of the ball, its approaching

angle and final angular velocity, it is first necessary to

calculate the required initial linear and angular velocity

of the ball at its home position.

Fig. 1. Impulsive pedipulation algorithm
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2) Assuming that the ball is originally in a stationary

state, it is necessary to calculate the required impulse

needed to produce the momentum required to perform

the desired motion, as well as where to apply it; that is,

the impact coordinates.

3) Knowing where to apply the required impulse, the

required configuration of the leg of the robot at the

moment of impact can be calculated, as well as the

required kicking velocity of the foot.

4) Finally, a suitable trajectory of the foot should be

chosen, so that it can exert the desired kick motion,

while maintaining the robot’s stability by means of a

proper trajectory of the waist.

The next sections deal with every one of these stages.

III. PROJECTILE MOTION

Let us define two frames: the world frame {W} where the

Z axis points up, and the ball frame {B} which is rigidly

attached to the ball. Any point of the ball that is described

in {B} will be denoted by the corresponding position vector

and a leading superscript indicating that it is referenced to it

[12]. Vectors that are not denoted by any leading superscript

should be considered as being described in {W}.

Let us assume that the ball will follow a projectile motion

(under the influence of gravity only); that is, the effect

of various aero dynamical forces, as the drag force and

the “Magnus effect” [11], will be neglected given the low

impulse that the actual humanoid robots can exert on the

ball.

Given a 3D goal position of the ball PG, we can use

the standard projectile motion equations that describe the

trajectory of the ball’s position (its center) PB (t) to find a

suitable initial velocity vector v0.

This trajectory is given by

PB (t) = PB (t0) + v0t−
1

2
gt2 (1)

Where t0 is the time of the impact, g =
[

0 0 g
]T

is

the gravity vector and g is the gravity’s acceleration, whereas

the initial linear velocity vector v0 may be described by its

magnitude v0 and its direction {φm, θm0} (Fig. 2): φm is

defined as the angle between the trajectory’s projection on

the ground and the X axis of {W} and θm0 as the angle of

launch. Such that,

v0 =





v0x
v0y
v0z



 =





v0 cosφm cos θm0

v0 sinφm cos θm0

v0 sin θm0



 (2)

Then, considering that T is the time needed to attain the

goal, we get PG =
[

PGx PGy PGz

]T
by evaluating

PG = PB (T ).
The angle φm gives us the orientation of the plane of

motion (where the motion occurs) with respect to the XZ
plane, so that this one is constant during the whole trajectory

and can be directly calculated from the goal position as

φm = arctan 2 (PGy, PGx) (3)

Fig. 2. Projectile motion

However, the other three variables (T , v0, θm0) cannot

be directly calculated because the three equations are not

independent.

There is an infinite set of possible trajectories capable of

accomplishing the required goal, unless we specify another

constraint for the problem. We select the approaching angle

θmF (Fig. 2) as a constraint, which can be defined as the

direction of the ball’s movement at the goal position and

within the plane of motion; that is, the angle between the

velocity vector at that point, vf , and the XY plane of {W}.

The velocity of the ball at the goal position is obtained by

vf = d
dt
PB (T ) =

[

vfx vfy vfz
]T

, such that

tan θmf =
vfz

√

v2fx + v2fy

=
v0 sin θm0 − gT

v0 cos θm0

(4)

Let us refer to (1) after substituting (2) and evaluating

it with T to get PG, as well as (4). We have a system of

equations that can be solved for the required angle of launch

θm0 and the magnitude of the initial linear velocity v0:

θm0 = arctan

(

2PGz

cosφm
PGx

− tan θmf

)

(5)

v0 =

√

PGx

cosφm

g
(

1 + tan2 θm0

)

tan θm0 − tan θmf

(6)

And because there are no aero dynamical forces consid-

ered that may change the angular velocity of the ball during

the trajectory, the initial angular velocity ω0 is equal to the

final angular velocity ωf at the goal position; that is,

ω0 = ωf (7)

IV. BALL’S IMPULSIVE CONTACT MODEL

Having obtained the initial linear and angular velocity

vectors, and assuming that the ball is originally steady, it

is necessary to calculate the impulse f̂P needed to produce

the momentum required to initiate the ball’s desired motion,

as well as the point on the ball to apply that impulse; that

is, the impact coordinates (φ0, θ0), as shown in Fig. 3.

This is done by formulating and solving the dynamical

model of the ball at the moment of the impact; that is,

considering the external impulse.
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Fig. 3. Definition of the impact coordinates in {W}

Fig. 4. Relationship between the ball frame and the world frame

A. Orientation of the ball

Idealizing the ball as a plain sphere, it doesn’t have

any inherent orientation. However, in order to introduce the

impact coordinates (φ0, θ0) into the model, we can consider

that the frame {B} is oriented such that the ball is always

impacted at the point BPP , described in that frame; that is,

BPP =
[

−r 0 0
]T

(8)

Then, if we describe the orientation of {B} with respect to

{W} by using the Euler ZY X convention and the orientation

coordinates (φB , θB , ψB) (Fig. 4), we will have the following

correspondence with the impact coordinates:

φ0 = φB (t0) θ0 = θB (t0) (9)

The rotation matrix that describes the orientation of {B}
with respect to {W} is denoted by W

B R (φB , θB , ψB), ac-

cording to the notation introduced in [12].

Let us remark that only when θB = ±π
2

the matrix W
B R

becomes singular; that is, the highest and lowest points on

the ball, which are not of interest for the task.

B. Lagrange equation of the ball

Let us describe the configuration of the ball qB ∈ R
6 by

using the set of generalized coordinates given by the position

of its center, PB , and its orientation coordinates:

qB =
[

PBx PBy PBz φB θB ψB

]T
(10)

If the mass of the ball is denoted as mB and its Inertia

Tensor with respect to its center of gravity as IB , then its

kinetic energy EKB is given by:

EKB =
1

2
mBv

2
B +

1

2
ωB

T IBωB (11)

Where vB is the magnitude of the linear velocity of the

center of gravity of the ball and ωB is its angular velocity.

This angular velocity is related to the rate of change of the

orientation coordinates,
(

φ̇B , θ̇B , ψ̇B

)

, given that the skew-

symmetric matrix of the angular velocity of the ball, denoted

as ω̂B (in order to differentiate it from the vector ωB), is a

function of W
B Ṙ:

ω̂B =
(

W
B Ṙ

)

(

W
B R

)T
(12)

Finally, the Inertia Tensor of the ball of radius r can be

expressed as IB = ρmBr
2I3, where I3 ∈ R

3 is an identity

matrix and ρ is defined as the construction coefficient of the

ball. The potential energy is given by

EPB = mBg
TPB (13)

Having done this, the Lagrangian can be calculated as

LB = EKB − EPB , so that the dynamical equation of the

ball at the moment of the impact can be expressed as:

d

dt

∂LB

∂q̇B
−
∂LB

qB
= QB (14)

C. Description of the impulsive forces

QB represents the generalized impulsive force created by

the impact and, in order to calculate it, we need first to

express BPP (defined in (8)) in {W}:

PP = PB + W
B RBPP (15)

From which the Jacobian JBP (qB (t)) can be calculated

by differentiating the last expression with respect to t.
The transpose of this Jacobian, JT

BP , relates the force

applied to the point PP , fP , with QB:

QB = JT
BP fP (16)

D. External impulse modeling

One way of modeling the external impulse is suggested in

[13]. The ball’s dynamical equation can be expressed as

MB q̈B (t) +CB +GB = JT
BP fP (17)

Where MB (qB (t)) ∈ R
6×6 corresponds to the mass

matrix, CB (qB (t) , q̇B (t)) ∈ R
6 to the coupling vector

and GB (qB (t)) ∈ R
6 to the gravitational one.

This dynamical model is valid only during the short time

that the collision lasts; that is, from t0 to t0 + ∆t. Let us

integrate (17) in this period of time and assume that ∆t is

so small that it is possible to idealize it as ∆t→ 0.

Under this assumption, the position and orientation of

the ball remains constant during the time that the impact

lasts. Also, as the velocities and the gravitational effect

are assumed to be finite, the integral terms
∫ t0+∆t

t0
CBdτ

and
∫ t0+∆t

t0
GBdτ become zero as ∆t → 0 [11] [13].

The integral term
∫ t0+∆t

t0
fP dτ produces a finite impulse,

denoted by f̂P . Then we have,

∆q̇B = M
−1

B JT
BP f̂P (18)

Where ∆q̇B = q̇B
(

t+0
)

− q̇B
(

t−0
)

(as ∆t → 0, t−0 and

t+0 will be used to refer to the time t0 just before and after the

impact, respectively). That is, it relates the impulse exerted

on the ball with its linear and angular velocity just before

and after the impact.
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V. REQUIRED IMPACT CONDITIONS

Let us consider (18). This equation is a function of f̂P ,

φB , θB , ψB and q̇B
(

t+0
)

(as the ball is steady just before the

impact, ∆q̇B = q̇B
(

t+0
)

), where q̇B
(

t+0
)

is a function of

the initial linear velocity v0 and the initial angular velocity

ω0 (which depends on φ̇B
(

t+0
)

, θ̇B
(

t+0
)

, ψ̇B

(

t+0
)

).

By expanding (18) we get six equations corresponding

to each of its components: the first three relate the applied

impulse to the initial linear momentum of the ball, such that

we can directly calculate f̂P as

f̂P = mBv0 (19)

On the other hand, the following three equations give us

the relationship for its initial angular momentum, from where

it is possible to calculate the necessary impact coordinates

φ0 = φB
(

t+0
)

and θ0 = θB
(

t+0
)

by solving:

f̂Pxsφcθ − f̂Pycφcθ + ρmBrψ̇B0sθ = ρmBrφ̇B0

f̂Pxcφsθ + f̂Pysφsθ + f̂Pzcθ = ρmBrθ̇B0

φ̇B0sθ = ψ̇B0

(20)

cφ = cosφB0, sφ = sinφB0, cθ = cos θB0, sθ = sin θB0.

This can be done by means of a multiobjective optimiza-

tion procedure as it is the goal attain method [14].

A. Main components of the impulse

The impulse f̂P has two main components (Fig. 5): (i) a

normal component (f̂Pn) which is directly related to the

change in relative motion (in the normal direction) of the

points that come into contact, and (ii) a tangential component

(f̂Pt) which has to be produced just by the effect of friction

[15] [16]; such that,

f̂P = f̂Pnn̂+ f̂Ptt̂ (21)

This means that there is a constraint that should be

taken into account when solving (20): The magnitude of

the tangential component of the impulse is constrained by

the coefficient of static friction, µs; such that we need to

consider the following inequality:

f̂Pt ≤ µsf̂Pn (22)

The vector n̂ can be calculated from (15) as

n̂ =
PB − PP

‖PB − PP ‖
=





cφcθ
sφcθ
−sθ



 (23)

While the vector t̂ can then be calculated from (21) by

knowing fP and n̂.

B. The zero initial angular velocity case

As we are not considering any aero dynamical effect that

depends on the angular motion, it is possible to simplify

(20) by considering a desired zero initial angular velocity,

ω0 = 0; that is, φ̇B (t0) = θ̇B (t0) = ψ̇B (t0) = 0, so that

we have

φB0 = arctan 2 (v0y, v0x) (24)

θB0 = − arctan 2
(

v0z,
√

v20x + v20y

)

(25)

Fig. 5. Normal and tangential components of the impulse

VI. HUMANOID’S CONFIGURATION

Let us consider a humanoid robot which will perform

the kicking motion to exert on the ball the desired impact

conditions. Also, let us consider three frames: {S}, {C} and

{K}, rigidly attached to the support foot, the waist and the

kicking foot, respectively.

By knowing the initial position of the ball, PB

(

t−0
)

and

the impact coordinates (φ0, θ0) we can calculate the impact

point PP (in the world frame) as

PP = PB

(

t−0
)

− rn̂ (26)

Then, proposing for the humanoid: (i) the position and

orientation of the support foot,
(

PS ,
W
S R

)

, (ii) the position

and orientation of the waist at the moment of the impact,
(

PC ,
W
C R

)

, (iii) the point on the kicking foot that will

impact the ball, referred from now on as the “toe” and

described in {K}, KPP (Fig. 6), and (iv) the orientation of

the kicking foot in that moment, W
K R, we can calculate the

configuration of the robot qR (the joint values) at the moment

of the impact, by solving its inverse kinematics problem.

VII. HUMANOID’S IMPULSIVE CONTACT MODEL

The dynamic model of the humanoid robot can be ex-

pressed in a similar way as for the ball, (17), as

MRq̈R (t) +CR +GR = τR − JT
RP fP (27)

Where qR (t) contains the joint values and τR (t), the

corresponding torques. By the third law of Newton, fP

should have the same magnitude and opposite direction, as

indicated with the minus sign.

Integrating (27) from t0 to t0+∆t and assuming ∆t→ 0,

∆q̇R = −M
−1

R JT
RP f̂P (28)

This expression is similar to the one obtained for the ball.

Fig. 6. Description of the “toe” in the kicking foot frame
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VIII. ROBOT-BALL COLLISION MODEL

Knowing where to apply the impulse, as well as the

configuration of the ball and the robot (qB, qR) at the

moment of impact, we are able to calculate the required

approaching velocity of the “toe” (the point of contact of the

foot with the ball), which will exert the necessary impulse

that will start the ball’s motion.

We will assume that the bodies in contact at the moment

of collision are rigid. Then the mathematical theory of rigid

body collisions may be used [13].

When two rigid bodies collide, the relationship between

the velocity of both at the contact point (PP ) [16] just

before and after the impact can be expressed by means of

the following expression [11]:

(∆vRP −∆vBP )
T
n̂ = − (1 + e) (vRP − vBP )

T
n̂

(29)

Where e is the Coefficient of Restitution (CoR), vBP and

vRP stand for the velocity of the point PP on the ball and

on the robot’s toe, respectively, along the unitary vector n̂

that is normal to the contact surface.

The vectors ∆vBP and ∆vRP are calculated with the

aid of (18) and (28), respectively, and the corresponding

Jacobian:

∆vBP = JBP∆q̇B = JBPM
−1

B JT
BP f̂P (30)

∆vRP = JRP∆q̇R = −JRPM
−1

R JT
RP f̂P (31)

Where MR

(

qR
(

t−0
))

and MB

(

qB
(

t−0
))

are the mass

matrices of the robot and the ball, and JRP

(

qR
(

t−0
))

and

JBP

(

qB
(

t−0
))

are the corresponding Jacobians that relate

the velocity of the point PP (in each object) with the rate

of change of the generalized coordinates. Notice that these

matrices are a function of qR and qB at the moment of the

impact, which were previously computed.

Substituting these expressions into (29) and assuming that

the ball is originally at rest we can calculate the normal

component of vRP , the approaching velocity of the toe:

vT
RP n̂ =

f̂Pn

1 + e
n̂TNn̂+

f̂Pt

1 + e
n̂TNt̂ (32)

Where NR = JRPM
−1

R JT
RP , NB = JBPM

−1

B JT
BP

and N = NR +NB .

In order to calculate the tangential component of this

velocity it is necessary to consider that the required frictional

impulse is less than required to begin sliding, as (22) holds,

so that the foot sticks to the ball and there will not be any

relative motion between them over the infinitesimal time

that the impact lasts. Then, the foot has to follow the same

tangential velocity of the point of the ball PP when the last

one starts its movement, such that

vT
RP t̂ = ∆vT

BP t̂ = f̂Pnn̂
TNB t̂+ f̂Ptt̂

T
NB t̂ (33)

In this way we can calculate the required velocity of the

point PP on the foot at the moment of impact with the ball,

so that it acquires the desired motion.

IX. KICKING MOTION PLANNING

Once the required velocity of the toe is known, we need

to generate a suitable 3D trajectory that satisfies the position

and velocity of the toe at the moment of the impact.

This can be accomplished by shaping this trajectory with

cubic B-Spline curves as these ones have very nice properties:

(i) the curve is entirely contained in the convex hull of its

control polyline, and (ii) the curve can be locally controlled

[17].

A B-Spline is an approximating curve. Its shape is de-

termined by its control points but the curve itself does not

pass through those. However, it is possible to interpolate a

set of data points K0, . . . ,Kn with a curve made up of

n segments, which starts and ends with given velocities v0

and vn, and is travelled during a time τ , by solving a linear

system of equations, as shown in [18].

A. Trajectory planning

By using B-Splines we can now construct a trajectory for

the kicking foot. Although there are many ways to achieve

this motion, generally it may be divided into two phases, each

one described by a different B-Spline: (i) the kicking phase,

which detaches the foot from the ground (with an initial zero

velocity) and drives it to the kicking position PP with the

required velocity vRP , and (ii) the recovering phase, which

drives the foot moving with a velocity vRP to the landing

position (with a zero velocity).

It is worth mentioning that sometimes the trajectory may

not be contained inside of the leg’s workspace, unless we

vary the time span τ of each curve.

In general, a shorter τ will lead to shorter curves, such

that we can fit them inside the workspace. However, shorter

values for τ imply that the foot will reach the desired velocity

in a shorter time; that is, they will require higher acceleration

values, which may be physically impossible to a achieve by

using a real robot.

B. Stabilization

Once the trajectory of the foot is decided and the leg

motion is produced, the robot should maintain its stability

during its motion. This can be done by independently moving

the waist of the robot (or its upper limbs) such that the ZMP

remains inside the polygon of support [19].

In this work, we used the method proposed in [20] and

implemented as in [21] to generate a waist trajectory capable

of stabilizing the robot’s motion.

This method, however, also modifies the waist position

during the impact, which in turns changes the impulse

exerted (vRP is a function of MR and JRP , as seen in (31)).

The whole-body balance can be taken into account through

generalized IK, for example by using the COG Jacobian

[22]. However, in this paper we adopted a simple method

that iteratively runs the algorithm just described, updating

the waist position suggested by the stabilizing process, until

this position remains unchanged during the impact.
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Fig. 7. Desired ball’s Trajectory (blue) vs. obtained one (red)

X. SIMULATION RESULTS

In order to test the developed algorithm we simulated a

kicking motion, performed by the small-sized commercial

humanoid robot GR-001. This robot is 0.255 m tall and

weights about 0.9 kg. It has 20 dof: six at each leg, three

at each arm, one at the waist and one at the neck. The legs

are driven by servos Futaba RS303MR (6.5 kgf.cm, 0.11

sec/60◦) while the rest is driven by servos Futaba RS304MD

(5.0 kgf.cm, 0.16 sec/60◦).

Given the size and weight of the robot, a rubber ball with a

radius r = 0.0243 m and a mass mB = 0.010 kg was chosen.

The ball’s construction coefficient is taken as ρ = 2/5 and

the coefficient of static friction is arbitrarily considered as

µs = 0.5. The CoR of the ball was measured using the

procedure explained in [23], such that e = 0.74.

Considering that the robot will perform a kick by using

his right leg, the position of support PS and the position of

the waist during the impact PC are proposed as:

PS =
[

0 0.0196 0
]T

m (34)

PC =
[

−0.0282 0.0258 0.145
]T

m (35)

Initially, the position of the kicking toe is given by PRP0

whereas for the ball it is PB0. These ones are set up to be:

PRP0 =
[

0.03048 −0.0196 0
]T

m (36)

PB0 =
[

0.09 −0.02 0.0243
]T

m (37)

It is desired that the ball reaches the goal position:

PG =
[

0.29 0 0.0243
]T

m (38)

That is, the ball should reach the floor 0.20 m ahead and

0.02 m to the left of its original position. Also, it is required

a final angular velocity ωf = 0 rad/s and an approaching

angle of θmf = −0.2618 rad.

In order to do that the ball should be given an initial linear

velocity v0, which is produced by applying the impulse f̂P

at the point of the ball with impact coordinates φ0 = 0.0997
rad and θ0 = −0.2618 rad. These ones are calculated as:

v0 =
[

1.9087 0.19087 0.51397
]T

m/s (39)

f̂P =
[

0.019087 0.0019087 0.0051397
]T

N · s (40)

The toe’s kicking velocity necessary to exert that impulse

is calculated as

vRP =
[

1.3898 0.13898 0.37425
]T

m/s (41)

The kicking motion was simulated on OpenHRP3 [24]

[25], given that this one was previously augmented by us to

handle realistic simulations of the ball dynamics [26]. Within

this simulator, the planned motion of the robot was used

as a reference by a simulated proportional derivative (PD)

controller, whose gains are 8000 and 500, respectively.

Three frames of the simulation are shown in Fig. 8, where

it can be seen that the ball reaches the goal position, tightly

delimited by a pair of goalposts and a crossbar.

The trajectory followed by the ball is shown in Fig. 7,

compared to the desired one. As we can see, the goal which

is originally 0.201 m away from the start is reached with

an excellent precision: the distance between the desired goal

and the obtained one is 0.001043 m (representing a 0.52% of

error). However, there is some discrepancy among the height

attained by both trajectories, as the maximum height that the

ball acquires is 88.8% of the desired one. This is because

there is some positioning and following error that the PD

controller is not able to suppress.

Let us look at the trajectory followed by the toe, which is

shown in Fig. 9 compared to the desired one. At first glance,

it seems that even when there is some positioning error the

ball is hit in the right place. However, if we make a zoom

in to the previous trajectory at the impact point (Fig. 10) we

can observe that there is a little error, as the ball is actually

hit at a slightly higher point. This is the main reason why

the ball follows a lower trajectory.

Also, if we analyze the simulated kicking velocity, it is

measured to be

vRP,sim =
[

1.3715 0.1359 0.3781
]T

m/s (42)

Which differs from the desired one shown in (41) by an

error in magnitude of about 1.17%.

XI. CONCLUSIONS AND FUTURE WORK

The developed algorithm solves the inverse problem for

the impact based trajectory of a spherical object satisfying

its conditions needed to plan its pedipulation.

Fig. 8. Simulated kicking motion
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Fig. 9. Desired toe’s Trajectory (blue) vs. obtained one (red) (XZ plane)

Fig. 10. Toe’s Trajectory Zoom In (XZ plane)

By using this method it is possible to have control over

the whole trajectory of the object, as long as it is physically

possible to be attained.

Referring to the simulation, we can see that the impact

conditions are actually very sensitive about the impact coor-

dinates and velocity, so that a precise control is needed to

perform the requested task with enough accuracy.

Another important point to remark is that, even when in

simulation the robot can try to follow a trajectory, in reality

a robot is limited by physical constraints, as there are the

torque and maximum velocity of the actuators, such that

many demanding tasks cannot be implemented in reality

given the actual hardware.

One of those demanding tasks is to lift the ball over a

considerable distance. Even when this distance is small, as in

the example shown in this work, the required joint velocities

overpass the 9.52 rad/sec limitation of the servos of this

robot (three of them overpass 15 rad/sec). Otherwise, the

trajectories would be beyond the leg’s workspace.

Future work includes the application of the proposed

method to a human-sized humanoid robot. The small-sized

robot used in this work has large feet. Then, it is relatively

easy to stabilize its motion, even by using demanding toe’s

trajectories. However, for a human-sized robot it is worth

to include a complete study of the balance of the robot,

which makes it possible to stabilize it even in the presence

of disturbances as it is the impact.

Also, until now, this algorithm requires the specification of

some parameters besides the goal conditions of the ball. We

would like to automatically tune in those parameters by using

an optimization process and, in this way, let the algorithm

choose efficient ones to accomplish the desired task without

the need of specifying them.
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