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Abstract—This paper presents a novel method for retargeting
human motions onto a humanoid robot. The method solves the
following three simultaneous problems: the geometric parameter
identification that morphs the human model to the robot model,
motion planning for a robot, and the inverse kinematics of the hu-
man motion-capture data. Simultaneous solutions can imitate the
original motion more accurately than conventional approaches,
which solve the problems sequentially. The proposed method can
reconstruct the human motion within the physical constraints im-
posed by robot dynamics. A reconstruction step enables quantita-
tive analysis of the retargeting results through direct comparison
with the original human motion. The method can also provide the
precise morphing function as well as subject-specific models, which
can handle the different body dimensions of human subjects. This
new framework is suitable for applications that require an accu-
rate generation of human-like motions with quantitative evaluation
criteria, such as humanoid robots that evaluate assistive devices.
Experimental tests of the proposed method were performed with
humanoid robot HRP-4.

Index Terms—Human motion capturing, humanoid robot,
identification, motion retargeting, optimization.

1. INTRODUCTION

UMANOID robots have recently attracted growing social
H attention because of their technical progress in hardware
and software and increasing performance expectations for
applications such as disaster response [1] and human interaction
[2], [3]. Robots that move like humans are well suited for
executing several tasks in environments originally designed
for human use. Humanoid motion can also enable a robot
to perform entertainment functions like dancing. Recently,
humanoid robots have been employed in the evaluation of
assistive devices. This application uses a robot’s sensing capa-
bilities together with active mobility, unlike crash test dummies
[4], [5]. Techniques involved in generating human-like motions
for a robot can also be applied to motion generation for digital
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human models [6], [7], which can in turn be useful in the design
of assistive devises [8], [9].

For these applications, robots must mimic human-like motion
with as much accuracy as possible. This imitation is complicated
by differences in the body structure and mechanical properties
between humanoid robots and human bodies. Several recently
developed humanoid robots approximate human morphology
quite closely [10], [11], and the correspondence of body parts
streamlines the imitation of human motion. However, the joint
configuration of such robots still differs from that of the human
body. Therefore, motions must be translated between different
morphologies of humanoid figures while preserving important
features. This technique is called motion retargeting. Such
a mapping process also requires researchers to quantify the
similarity of the generated motion to the original human motion.
Without such quantitative feedback, researchers lack clear mea-
sures to inform judgments about the best humanoid motion and
the optimal process for generating it. Quantitative measures of
similarity also encourage fundamental understanding of human
motion and allow flexible simulations of motion for different
body properties. In some applications such as human-oriented
product design or the evaluation of assistive devices, the quanti-
tative analysis of the generated motion is especially important.
Quantitative data are necessary, for example, in setting industrial
standards for purposes such as product promotion. Therefore,
this paper focuses on producing accurate mappings of human-
like motions while developing a quantitative comparison frame-
work to evaluate the accuracy of the resulting retargeted motion.

Motion retargeting techniques have been widely investigated
for character animations in the field of computer graphics,
and for generating robot motion [2], [3], [12]-[20]. In typical
applications, human motions are first measured using a
motion-capture system, and then the motion data are mapped
onto three-dimensional characters or robots. Retargeting
techniques combine two main processes, morphing and motion
reproduction [12]. The morphing process takes account of
the differences in body structure between the human and the
retargeted subject, while the motion reproduction process maps
the motion with the geometrical and mechanical consistency of
the retargeted subject.

When retargeting human motion onto a humanoid robot, there
are several considerations: the differences between geometric
parameters, range-of-motion limitations in the robot joints, and
constraints upon the center of mass (COM) or zero-moment



point (ZMP) [21] that maintain stable locomotion. Several ap-
proaches have been proposed for retargeting motion from hu-
mans to humanoid robots. Ott et al. [14] and Miura et al. [3]
executed the morphing process by attaching virtual markers to
a robot model and solving inverse kinematics or static equilib-
rium equations directly. Nakaoka et al. proposed another method
that fits the motion-capture data to the robot body in advance
using optimization techniques [18], [19]. After the morphing
process, motion must be generated in a way that preserves me-
chanical and dynamic consistency. These two process are usu-
ally executed sequentially. Geometric morphing is applied first,
followed by adjustments to meet dynamic constraints such as
torque limits on robot components or differences in balancing
[17], [19]. Several balance controllers have also been proposed
for maintaining dynamic stability, because the retargeted mo-
tion is often physically inconsistent with the mass distribution
of the robot [3], [16]. Several efficient retargeting techniques
enable retargeting of walking and dancing motions to humanoid
robots [2], [3] and some allow real-time implementation [14],
[15], [20].

Previous studies have, in general, focused on producing
human-like robot motion from measurements of actual human
motion, but most lack a quantitative framework that can analyze
the similarity of the generated motion to the original human
motions. Without such a framework, there is no guarantee that
the retargeted motion is similar in relevant respects to the origi-
nal human motion. We have previously investigated the evalua-
tion process as a motion-optimization problem, and proposed a
novel framework that evaluates how well a retargeting process
preserves salient features of the original human motions, such
as the trajectories of each joint or body segment [22].

Our retargeting method uses the general retargeting problem
reported in [12]. Each constraint condition for robot motion
has been introduced in previous related studies. The present
study includes four main innovations. First, the identification
step estimates both the geometric parameters of each subject
and the morphing parameters during the retargeting process,
and maintains physical consistency for the robot motion. Each
of these problems is dealt simultaneously by solving a single
optimization problem. Simultaneous optimization offers better
performance in accurately imitating human motions. Second,
simultaneous optimization can provide not only the robot mo-
tion but also a corresponding virtual human motion; the method
reconstructs the retargeted robot motion as if a digital human
model were performing the motion. The reconstructed human
motion reflects the modifications made for physical consistency
during the retargeting process. Our motion-optimization frame-
work enables quantitative analysis of the retargeting results in-
cluding force information through direct comparisons between
the original and reconstructed human motions. We introduced
a process for reconstruction of virtual human motion, which
we neglected in our previous work [22]. Third, the geomet-
ric identification step finds both subject-specific parameters for
each human performer and the optimal morphing parameters
from each human body to the robot frame. In contrast with con-
ventional heuristic methods, our method is practical because it
allows for automatic adjustments. Fourth, a redundant-jointed
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human model is employed in our morphing process by formulat-
ing the mapping function implicitly. In our previous work [22],
the morphing process used a one-to-one mapping function for
joint angles and orientations. However, such explicit formulas
are difficult to handle when the human source and humanoid
robot differ in kinematic structure. In this paper, we designed an
implicit mapping function based on feature points. Redundant
joints in a human, such as shoulders or spines, are constrained
after mapping to the robot model and serve as parameters in
the mapping function. The optimal angles for such redundant
joints, which depend on the outcome of retargeting, can be
computed automatically in solving the simultaneous optimiza-
tion problem. This feature of our process enriches the morphing
representation and enhances performance when retargeting mo-
tion that involves human joints more complex than their joint
analogs. Since our pilot study [22] could not process an implicit
formulation of the mapping function, we were unable to inves-
tigate this fourth feature of our process sufficiently until now.

The rest of this paper is organized as follows. Section II de-
scribes the formulation of our retargeting method with detail
discussions of the morphing problem, motion plaining for a
robot, and the inverse kinematics of a human model. Section 111
details the objective function and the constraints used in the op-
timization problem. The computational implementation is also
addressed in Section III. Section IV reports experimental re-
sults from tests that retarget captured human motions onto a
humanoid robot. Section V presents our conclusions and sug-
gestions for future research.

II. MOTION RETARGETING TO PRESERVE AND RECONSTRUCT
HUMAN MOTION

This section introduces a general formulation of the retarget-
ing problem as a combination of three subproblems: the mor-
phing problem of mapping a human body to a robot frame, the
problem of planning physically consistent motion in the robot,
and the inverse kinematics problem for the human model to
execute measured movements.

In this paper, let us model both a humanoid robot and a human
body as rigid multibody systems. We assume that the following
relationship between the two systems holds:

g(qraqha¢):0 (1)

where g;, represents the generalized coordinates of the human
system, g, represents the coordinates of the robot system, and
¢ represents the unknown model parameters. Equation (1) in-
dicates how to map (or “morph” [12]) the coordinate system of
each body segment from the human and to the robot, and vice
versa. In what follows, all model parameters for the robot are
assumed to be known because they can be provided by manu-
facturers.

The unknown parameter set ¢ contains the geometric parame-
ters of human body segments in order to accommodate variation
between human individuals. Even though they can actually be
measured or identified in advance, ¢ also includes constant ge-
ometric parameters that appears in the mapping function. Let
us consider a human model whose geometric parameters can
be changed. This stretchy model can be morphed into the robot
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model by changing the geometric parameters. In this case, such
geometric parameters are also included in the unknown param-
eter set ¢ (they are defined as ¢,,, in the next section).

Let g, ; and g, ; be the generalized coordinates of the human
and the robot, respectively, at time instances t = ¢1,%2,...,tn, .
The trajectories of the two systems are then defined as Q) =
(@, " qun, )T and Q, £ [q, ;" - q, x, T]". Let us as-
sume the following inequality constraint about trajectories Q,.:

hQ,) < 0. )

Equation (2) states the constraints necessary for controlling the
robot. For example, the robot needs to operate its joints within
mechanical limits and maintain balance with reference to its
COM or ZMP. The robot also needs to execute tasks such as
reaching to a designed target. In this sense, (2) contains the
motion planning problem for the robot. Note that though (2) is
formulated as a set of inequality constraints, equality constraints
can also be included in (2).
Next, we consider the following optimization problem:

min f(Py,, P , 3
Qh.¢f( h Pn(Qys @) 3)
where P}, represents the given human motion-capture dataset
and Pj, represents the estimated model of P;, from trajectories
@, and model parameters ¢. Equation (3) indicates the inverse
kinematics problem of computing human joint trajectories Q,,
while identifying human body segment lengths ¢ [23]-[25]. The
objective function f can be implemented as, for instance, the
mean-square-error normalization between the measured marker
positions and those projected by the model. Another example of
the cost function is the error function for Laplacian deformation
energy [18], [19].

Finally, we formulate the retargeting problem with the
following statement of an optimization problem and const-
raints [22]:

F(PL, PL(Q,, 9))

min
Q. Q. ¢

subject to

/g\(th Qrv ¢) =0
h(Q,) <0 4)

where g concatenates (1) for all times.

Let us clarify the benefit that the formulation in (4) affords in
mimicking human motion as closely as possible. As reviewed
above, several retargeting methods separate the mapping and the
motion planning processes [3], [13], [18], [19], which is almost
equivalent to solving the following problems sequentially:

min [Py, P(Q,, )

Q,.Q .9
SubjeCt to /g(Q}m @r7 ¢) =0 (5)
min  f(Q,.Q,)
subject to h(Q,)<0 (6)

where @r is an intermediate variable to connect the two prob-
lems and function f evaluates the error between @, and Q,..

The robot trajectory @7, is obtained by solving (5) first, and can
be regarded as a trajectory morphed from the measured human
motion. Then, the final trajectory @, is computed via the sec-
ond optimization problem [see (6)]. Usually, the cost function
in (6) contains terms that evaluate the differencg between the
morphed trajectory @, and the final trajectory @Q,.. Let us as-
sume an inverse mapping from @, to @, under (1). In such a
case, the trajectory @,. of the robot can be converted back to
the corresponding trajectory @h of the human. However, the
converted trajectory @h is not guaranteed to be an optimal so-
lution to the original cost function in (3). Solving (4) with both
constraints simultaneously can provide a trajectory that is opti-
mized for both close magging and physically consistent robot
motion, which leads better performance of motion retargeting.

The second benefit of our method is that it can reconstruct
retargeted robot motion as if a human model was performing the
motion. The problem shown in (4) can also provide solution for
the human trajectory @Q;, as well as that for @Q,.. Let us express
the solutions of (4) as @}, Q;, and ¢*. The trajectory Q;, is
different from the solution of the standard inverse kinematics
problem for human motion in (3) because @}, has been modified
according to the constraints in (1) and (2). The human motion
dataset can also be reconstructed by computing

= Py(Q;.¢") )

where P represents the reconstructed dataset. Let us assume
that we can obtain human motion data that satisfy Pj, = P}
under ideal conditions. When Q;, = Q; and ¢ = ¢ hold, the
error between P), and 1317, is equal to zero and the cost function
in (3) is effectively minimized. If P, = P also holds, all con-
straints in (4) will be satisfied. This exercise shows that, when
we are able to capture datasets such as P;, = P, the solutions
of (3) and (4) are expected to be the same without redundancy
problems. Therefore, the reconstructed dataset P; reflects the
modifications that are made during the retargeting process. By
comparing the reconstructed human motion with the originally
captured human motion, our method provides a framework for
evaluating the imitation effectiveness of the retargeted motion
by comparing apples to apples, as it were.

The proposed framework does not conflict with other ap-
proaches; with (2), we can still follow previous studies and
combine the constraints with strong optimization techniques for
motion generation [17], [19]. The proposed method can extend
this process to the simultaneous optimization problem by intro-
ducing an implicit formulation of the morphing function in (1)
when identifying geometric parameters.

In the proposed framework, the mapping function is written
in an arbitrary implicit form with respect to the joint coordi-
nates and morphing parameters. Therefore, a human model can
have a different number of degrees of freedom (DOFs) that
does the target robot. The human model can have redundant
joints not found in humanoid robots, such as sternoclavicular
joints or spines. Let g} represent such redundant joint angles.
They are constrained to certain values q;* during the morphing
process. Though g} * is not included in ¢, it can also serve as
a set of pseudomorphing parameters that enrich the represen-



tation archived by the morphing function. Note also that the
values of g;* depend on the particular kind of motion that is
being retargeted, and are difficult to determine in advance. For
example, the human shoulder consists of several joints. If the
shoulder is approximated as one spherical joint, the position of
its joint center should vary according to the actual posture of
the redundant shoulder joints. Our framework provides optimal
values for g;* in terms of (4), which can improve the results
when retargeting the movement of shoulders and other complex
human articulations.

Note that the proposed framework does not evaluate whether
(4) itself captures the best similarity metric for postures or mo-
tions in the same sense as that of human perceived judgments of
similarity, as mentioned in [26]. When the similarity metric is
assumed to be included in the cost function in (4), our method
can provide the optimal solution according to that metric. The
framework enables a quantitative comparative analysis of the
retargeting results by checking the modification of the several
physical quantities germane to the human model. Each applica-
tion for the method will take different quantitative measures as
relevant.

The main steps in the proposed method are summarized as
follows.

1) The method solves three simultaneous problems: the in-
verse kinematics problem of a human model, the geomet-
ric mapping between the human model and a robot, and
motion planning for the robot. Our simultaneous optimiza-
tion algorithm should yield better results than sequential
optimization, as it accounts for modifications throughout
the retargeting process.

2) Since the identification of geometric parameters is specific
to each human subject performing a motion, the method
can accommodate the varying body dimensions of indi-
vidual humans.

3) The method can reconstruct the retargeted motion to
produce the virtual human motion that reflects the mod-
ifications made during the retargeting process. This re-
construction enables direct comparisons with the original
human motion.

4) When using a human model with redundant joints, the
angles representing the redundant joints also contribute
to the precision of the morphing between the human and
robot structures. The proposed method can also provide
their optimal values.

A conceptual diagram of this method is presented in Fig. 1.
Actual implementations of the cost function and constraints
in our optimization problem [see (4)] are detailed in the next
section.

III. IMPLEMENTATION OF OPTIMIZATION PROBLEM
A. Morphing Function

Let us represent the geometric parameters with virtual me-
chanical joints [25]. Fig. 2 shows an example of representing the
distance of the joints with a translational joint connecting them.
The benefit of this representation is that ¢ can be expressed in
the generalized coordinates of the virtual mechanical joints, and
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simultaneous optimization problems

Reconstruction

Fig. 1. Conceptual diagram of the proposed motion retargeting method.

r(q.9)

Fig. 2.
structure.

Virtual joints that represent the geometric parameters of the link

we can use the same methods for kinematics computations that
we used for mechanical joints.

Let us consider a human model that consists of generalized
coordinates g, and geometric parameters ¢, . To construct a
subject-specific human model, ¢; will be fully specified. We
may also introduce another human model by changing only the
geometric parameters, as any two human models have the same
generalized coordinates but different geometric parameters. Let
us refer to the latter model as the morphed model and define
¢,, as its geometric parameters. We now consider the feature
points attached on the morphed human model. Let the position
of feature point k£ be represented by the forward kinematics
function 71 (g;,, ¢y, ).

We also consider a robot model with generalized coordinates
q,.. We can assume that all geometric and inertial parameters of
the robot are given. Let g;, and g, be represented as

T

a, = [p" &7 6,7] (8)

(p,” &7 67" ©9)

where p;, and p, are the position vectors of the base-link of the
human and robot, respectively, &, and &, represent the quater-
nion of the orientation of the base-link, and 6, and 0, be the
vectors of the joint angles.

The robot model has feature points that corresponds to the
points attached to the morphed model. Let the position of feature

q, =
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point & on the robot be sy (g, ). In the morphing process, let us
maintain the following relationship for all feature points on the
robot model and the morphed model:

Sk (qr) = Tk (qh,a ¢m)' (10)

By choosing appropriate constant parameters ¢,,, the loca-
tions of the feature points attached on the morphed model can
match those on the robot model. We assume that all joint coor-
dinates of the robot have equivalent coordinates in the human
model. In other words, by simplifying the joint coordinates of
the morphed model with the appropriate parameters ¢,,, the
morphed model can realize the same kinematic structure as that
of the robot model. Since we have made this assumption as
long as g, is given, we can find at least one solution of g, that
satisfies (10).

During the morphing process, ¢, and ¢,, are the unknown
geometric parameters. Let us concatenate them as vector ¢ in
the following discussion:

o= [6,7 ¢ (11)

The mapping functions are often formulated as one-to-one
correspondences between the joint angles or rotations, g, and
g, as in our previous work [22]. Though such mapping func-
tions allow easy computation, they are less useful for capturing
difference in the kinematic structure. Below, we use a formula-
tion based on (10) for retargeting motion from redundant-jointed
human model.

B. Evaluation Function for Human Inverse Kinematics

Letp; ;"' (1 <i < Ny, 1 <t < Np)be the measured po-
sition of the ith captured marker at instances t,%2,...,tn,,
where V) is the total number of markers. The captured human
motion data P, consist of pm"elc for all markers and time in-
stances. We now define the following evaluation function with
respect to q;, ; (1 <t < Nrp):

Nr Ny

(@ d) 2 33 lIpilan) — b

t=1i=1

12)

where p; indicates the position of the :th marker attached to the
human model and p; is a function of g, obtained by forward
kinematics computation. Equation (12) represents the problem
of computing the inverse kinematics of the human joint tra-
jectories and identifying human segment lengths from motion-
capture data [25].

Function P}, in the previous section corresponds to the for-
ward kinematics functions p; and computes the position of the
markers attached on the model at all-time instances. Equation (7)
is also implemented by computing the forward kinematics func-
tions p; using the optimized solutions.

C. Physically Consistent Conditions of the Robot

Let us consider the following conditions that limit the joint
angles and their derivatives:

07‘,min S ar S 07‘.1113.)( (13)
97‘.min S 0r S ér,ma‘x (14)
ér,min S ér § ér,ma)v (15)

Equation (15) originates from conditions constraining of the
joint torques. The dynamics of the motors are often dominant in
joints with gears that have a high reduction ratio. In this case, by
estimating the maximum load inertia of each joint individually,
the upper and lower limits of joint acceleration can be estimated.
Before considering the constraints on the dynamics of the
robot, we assume the following about the human motion data
and the feet of the robot.

1) All contact states in human motion data are known for all
time instances.

2) All motions are always balanced and in contact with the
ground.

3) The sole of the robot foot is flat, and the XY plane of the
coordinate system of the foot link plane is parallel to the
sole.

When the human foot contacts the ground, we add the fol-

lowing condition for the corresponding robot foot:

(16)
7)

Rr,footez = €

pr.fool =0

where p, (o € R3 (foot = rfoot, [foot) is the position of the
coordinate system attached to the left or right foot, R, oo €
R3*3 is the orientation matrix, and e, = [0 0 1]T.

When both feet contact the ground, the following condition
is imposed at the corresponding times:

eZT(pr,Zfoot - pr.rfoot) =0. (18)

In this paper, we approximate a ZMP equation for the whole
system with a model of a linear inverted-pendulum whose mass
is concentrated at the COM and manipulated by ZMP [27], [28].
This equation can be described by

g ,l
D (pc - p;‘ép)
C,z

b, = (19)
where p, € R? is the position of the COM, p, . is its z-axis
component, g is the constant for acceleration due to gravity, and
péi{p is the desired ZMP of the robot, which is determined from
the human motion capture data. p
constraint:

ref

»mp Must satisfy the following

Py C Py (20)

where P,,,,, represents the allowable area for the ZMP inside
the supporting polygons of the robot feet. The center of pressure
(CoP) of the human can be measured or estimated from the
motion-capture data. As the human is balanced in contact with
ground, CoP can be used directly as a candidate for p:*f . We

zmp*

need to check whether pi‘ffip satisfies (20). When pifﬁp lies

outside of the supporting polygons of the robot feet, it is moved



to the nearest point inside the polygon. Though morphing of
ZMP will be required when the robot feet are of a totally different
shape from that of the human, we assume that the difference is
small and can be neglected.

We also assume the following limitation on the center of total
mass, in order to maintain static equilibrium in complicated
postures when the reference ZMP is unreliable

p. C P ey

where P, represents the motion range area of the center of total
mass, and the supporting area is designed to match this area
projected onto the XY plane.

The above constraints are mainly focused on the physical
consistency and the control issues [22]. However, the robot
sometimes needs to achieve particular tasks with its retargeted
motion. In a reaching motion, for example, the hand of the robot
needs to actually reach the target. Because of the different body
properties of a human and a robot, even if the retargeted motion
is similar in the joint-angle space, the robot feature point may
not reach the target position in Cartesian space. We also consider
constraints on the positions of some links such as hands. From
a practical viewpoint, we select the subset of markers attached
on those links in human motion-capture data. We also select the
virtual markers corresponding to the human marker set on the
robot model. We now add constraints on the positions of these
particular markers as

Vi€ Su P (g) =p;" (22)
where p§°b°t represents the position of the jth virtual marker
attached on the robot model and p;"b"t is a function of g, ,
obtained by forward kinematics computation. S, is the set of
indices of the selected markers.

D. Implementation of Optimization

Direct optimization of Q;,, Q,., and ¢ of (4) would entail a
huge computation cost because of the large number of variables.
The problem would grow more complex than the geometric
identification problem [25]. In the standard problem, since the
velocities and accelerations need not be considered, we usually
select the minimal set of samples of @) that allow the iden-
tification. In this paper, (4) is solved with the following three
implementation choices.

A) The velocities and accelerations are computed by the

finite-difference method.

B) All equality and inequality constraints are solved by the

penalty-function method [29].

C) The geometric parameters are assumed to be quasi-non-

variant.

The derivative of the generalized coordinates at time ¢ can be
computed according to (A) as

1
T = Kt(mf - CCt—l) (23)
1 . .
Wt = K(Et)&(ét —&1) (24)
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where x represents the variables except rotation variables and
K (&,) is the matrix that converts the derivative of quaternions
to angular velocities. The initial velocities and accelerations are
considered to be zero.

Let us estimate the initial values for the quasi-non-variant ge-
ometric parameters before retargeting. In this paper, we choose
several samples from the dataset measured by a motion-capture
system, and the initial parameters are computed by solving (12)
under (10) and only the constraints on joint angles within the
gemetric identification step [25]. Note that the conditions on
physical consistency including velocities and accelerations of
the robot are ignored in this initial guess. Let the identified val-
ues be defined as ZS Strictly speaking, since many human joints
are not actually rotational or spherical joints, each length be-
tween the joints can change slightly. Therefore, the geometric
parameters are assumed to be time-variant according to step (C),
and a penalty against ¢, is added. Finally, (4) can be computed
by solving the following problem for all times:

N

1 of
) Z ||pi(qh,ta ¢t> - pi,tmf ||2

i=1

+wolldy — BII* +wge D llse — il
k

min

q,,9,,

o, Y [l min(0, )P

l

(25)

where h;, represents the individual inequality constraints from
(13) to (22), and wy, wy, , and wy,, are weighting factors for each
penalty term. Each penalty weight is determined according to
an allowable violation of the inequality constraint.

Since problem (25) can be regarded as an inverse kinematics
problem of two multibody systems, it can be solved by the usual
inverse kinematics techniques. The number of variables in (25) is
double that required for the normal inverse kinematics problem
for one robot. Typical inverse kinematics methods require large
computational resources to compute the Jacobian matrix and its
inverse. We solve this problem with a fast inverse kinematics
method for large-scale multibody systems [30]. The method [30]
solves the inverse kinematics problem without computing the
Jacobian matrix of each link and its inverse. Instead, this method
computes the gradient vector of the cost function by solving the
static equilibrium problem and updates the solution through a
super-linear method such as a conjugate-gradient method [29].
The computational complexity of each iterative computation in
this algorithm is O(N), where N is the number of variables of
the problem.

Note that all equality and inequality constraints can be solved
for using other methods such as sequential quadratic program-
ing (SQP) [29]. Though the penalty function method allows for
violation of the constraints, SQP can obtain a precise solution.
We begin to use the penalty function method because our orig-
inal goal is fast implementation for future applications, such
as online retargeting. The retargeting framework contains not
only variables for the robot but also those for the human and
the geometric parameters; the total DOFs can exceed 100. Since
the computational complexity of even the quasi-Newton-SQP is
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Fig. 3. Overview of humanoid robot HRP-4 (left). The robot can wear a
human assistive device (right).

much higher, we adopt the above method [30]. Violations of the
constraints can also be reduced by increasing the weight of the
penalty, and can be neglected with respect to the tracking error
of the controllers when the robot actually plays back the mo-
tion. However, if accuracy rather than speed is important, when
conditions are so severe that the range of the solution is narrow,
for example, the proposed framework should be implemented
with SQP instead.

IV. EXPERIMENTS ON RETARGETING MOTION

This section presents the experimental results for the pro-
posed retargeting method. First, we report the results of several
retargeted motions that can be performed by an actual robot.
Then, the advantage of the simultaneous optimization of (4) is
demonstrated with an example situation in which our method
offers better performance than the results of solving (5) and (6)
sequentially. To validate our method’s effectiveness, the recon-
structed human motions are compared to the original motion-
capture data. The performance of our framework is assessed
with an example of retargeting arm movements performed by a
model with redundant shoulder joints. We finally demonstrate
that the geometric parameter identification accommodates re-
targeting from several different sizes of human subjects.

A. Experimental Setup

The proposed method was tested with humanoid robot HRP-
4 [11]. An overview of the robot is shown on the left side of
Fig. 3. Though the original body surface of HRP-4 is made of
hard plastic covers, we replaced the covers with a soft suit in
order to mimic a human body surface. The geometric properties
of HRP-4 are also designed to be close to the measured average
of humans. This similarity enables the robot to wear clothes or
devices designed for humans. The right side of Fig. 3 shows the
robot wearing an assistive device [8] for evaluating the device.
Though the total DOF of the robot is originally 34 [11], our
robot has a roll joint at the waist. The finger joints were fixed
for the whole retargeting process; therefore, the total robot DOF
for our experiments was 31. The placements of the joints that
we use are illustrated on the left side of Fig. 4.

A
O Spherical joint 8 Translational joint (virtual joint)

'Z@.? Rotational joint i} Feature point

*.*

robot model human model

Fig. 4. Joint placements of HRP-4 (left) and a human model (right). The
geometric parameters are represented by virtual translational joints (right). The
feature points used in the morphing function are shown as star markers (left and
right).

We also used the human skeletal model as reported in [6],
[22]. Though the original DOF of the model exceeds 100, some
joints of the model can be fixed for simplicity. The remaining
free joints are shown on the right-hand side of Fig. 4. As aresult,
the remaining DOF was finally 51, which is larger than the DOF
of the robot. The joint placement in the human model mainly
differs from that in the robot in that it includes several redundant
spherical joints in the human model to represent shoulder and
spine movements.

Our method represents variation in human geometric param-
eters with several virtual mechanical joints that function as
translational joints. We replaced parameters with virtual joints
according to the diagram on the right side of Fig. 4. The feature
points used in (10) are also illustrated in Fig. 4. They are gen-
erally located at the center of a joint or a point offset from the
center of the joint, where the offsets have common values.

When evaluating assistive devices, the movement of the waist
is often focused upon because some assistive devices are de-
signed to support the waist in preventing back pain [5], [8].
The results of retargeting waist movements are presented in
Sections IV-B1 to IV-B4. In order to check how the retargeting
process performs with redundant joints, shoulder movement is
also investigated in Section IV-B5. In summary, we recorded
the following motions for our tests:

1) Bending motion: A subject bends forward from the waist
with dumbbells in hand, and then returns to an upright
position. Snapshots of the measured motion are shown in
the top row of Fig. 5.

2) Twisting motion: A subject lifts up a light object placed
in front of the right foot and sets it down on the left side
by twisting at the waist (see Fig. 6).

3) Arm motion: A subject raises and moves the arms as if the
subject were turning a handle located in front and above
the head. Snapshots of the measured motion are shown in
Section IV-BS.
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Fig. 5.

Snapshots of bending forward motion. The figures in the top row show motion-capture data. The retargeted motion performed by the robot is pictured in

the figures in the middle. The reconstructed markers from the retargeting result are shown in the bottom figures.

We recorded motions by several human subjects with motion-
capture systems. When retargeting the motions according to
(25), we used the following weighting factors: wy = 10, w,, =
100, wy, = 100 for joint limits; wy,, = 100 for ZMP constraints;
wp, = 500 for COM constraints; wy, = 500 for foot contacts;
and wy, = 2 for the constraints on the reaching task. The po-
sitions of the markers attached to the hands were used for ref-
erences in the task constraints. In order to prevent the penalty
function method from violating the inequality constraints of
(25), we also added a safety margin to some of the inequality
constraints; the margin for each joint angle limit was set at two
degrees and that for the ZMP and COM was one centimeter.

Though the sampling period for the captured motions was
originally 5 ms, we made the twisting and arm motions two times
slower in the retargeting process; the data were resampled with
a sampling period of 10 ms. We made this adjustment because
the operating speed of the measured human joints exceeded the
maximum speeds of several joints of the robot. Since our main
focus is an analysis of the geometric features of the motion
of each body segment, as shown in the cost function (25), we
introduced this slow-down operation. However, this slow down
can obscure the detailed dynamical features of quick motions

in practice, so we will investigate an automatic method of time
scaling within the constraints of speed limits in future work.

We solved (25) iteratively to generate motions in HRP-4. The
computation time for each motion frame was kept within 30 ms
for 1 step of whole-body motion by using an Intel(R) Core(TM)
17-4800MQ CPU (2.70 Gz). Before the robot actually performed
the motions, we also checked that the joint angles, COM, ZMP
did not violate the constraints in the simulation.

B. Experimental Results

1) Retargeting Results for Two Types of Waist Movements:
The proposed method was tested first by retargeting the move-
ments at the waist, the bending and twisting motions described
above. The retargeted motions were successfully performed by
HRP-4 while remaining upright, as the snapshots in the middle
rows of Figs. 5 and 6 indicate. Our method can reconstruct the
retargeted result and map it onto the original human marker po-
sitions, yielding a reconstructed motion that takes into account
the modifications made to the original motion, according to (7).
Snapshots of the reconstructed models are shown in the bottom
rows of Figs. 5 and 6, which will be detailed in Sections IV-B3
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Fig. 7. Joint angles of the robot during the bending motion. The solid and

dotted lines show the angle of the yaw and pitch axis of the chest joint, respec-
tively. The dashed line is the pitch angle of the right hip joint. The joints reach
their limits in the gray sections.

and IV-B4. As can be seen from Fig. 5, the robot could mimic
the posture of all body segments in a fashion quite similar to that
of the measured human motion in all snapshots. The figures also
show visible differences between the positions of the measured
and reconstructed markers when bending deeply. These inac-
curacies are due to limitations on the joint angles of HRP-4’s
chest- and hip-pitch joints. Fig. 7 shows the joint angle trajecto-
ries of the chest and hip joints during the bending motion. The

Snapshots of twisting motion. Top: captured markers, Middle: retargeted motion, Bottom: reconstructed markers.
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Fig. 8. Joint angles of the robot during the twisting motion.

chest-pitch joint stays at its maximum angle from 3 to 9 s; the
hip-pitch joint maxes out from 5 to 8 s. Fig. 6 also shows that
the twisting motion of the robot closely resembles the original
human motion, except for the fourth and fifth snapshots. When
bending deeply, the joints at the chest and hip of the robot reach
their limits. Fig. 8 shows the joint angle trajectories of the chest
and hip joints during the twisting motion. Limits on these joints
cause the difference in trunk postures between the robot and the
human. The snapshots indicate that the robot tried to perform
the reaching task within the possible operational range of the
joints; we can see in the retargeted and reconstructed motion
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Fig. 9. Retargeting results from two optimization approaches: the left figure
shows the measured human data, the middle one is the result given by the
simultaneous optimization, and the right one shows the result obtained from the
sequential optimization algorithm.

that the robot knees bended more deeply to compensate for the
waist and chest limitations.

2) Comparison Between Simultaneous and Sequential Opti-
mization: Next, we present an example of a motion for which
our simultaneous optimization yields better performance than
solving the optimization processes sequentially. The lifting mo-
tion was also retargeted by solving the sequential processes with
the same physically consistent conditions. Function ]?in (6) was
implemented as the sum of the mean squared error between the
two joint trajectories at each time instance.

One snapshot when the human subject bends deeply is shown
on the left of Fig. 9. The corresponding robot postures are also
shown in Fig. 9. The center figure shows the results of simultane-
ous optimization, and the right figure shows the result obtained
from sequential optimization. Due to the joint-limit constraints
on the hip and chest joints, the robot could not imitate the human
motion exactly and needed to modify its own motion as shown
in Fig. 7. The location and posture of the robot arms are sig-
nificantly different in Fig. 9. As mentioned in Section II, when
optimizing in sequence, the second optimization is performed
only for the robot’s physical constraints, which causes drift from
the optimal solution of (4). This point is the advantage of the
simultaneous optimization compared to the sequential approach.

3) Comparative Analysis in the Joint Space Using Re-
constructed Human Motion: Our method can also provide a
reconstructed human motion @Q,,* that corresponds to robot
motion Q,.*. This step enables direct comparisons between
the human joint coordinates during the original human motion
and the coordinates the same human would traverse during the
reconstructed motion. In addition, by utilizing inverse dynamics
analysis for a human skeletal model [6], dynamical quantities
such as joint torque can also be compared. This subsection
focuses on the comparison of the waist joint movement of the
human skeletal model during the lifting and twisting motions,
since the waist joint plays an important role in such motions.
The waist joint coordinate system is located at the L5 vertebra
in the skeletal model, as shown in Fig. 10, where the initial
posture of the bending motion is also shown. The waist joint
is modeled by a spherical joint, as shown in Fig. 4. Note that
HRP-4 has no waist joint but instead features rotational chest
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Fig. 10.  Overview of human skeletal model. The left figure shows the initial
posture of the model. The right one is the posture at the beginning of the lifting
motion. The right figure also indicates the waist joint coordinates located at L5.

joints. The geometric offset between the human waist and robot
chest joints is calibrated according to the morphing process.

The joint angles, velocities, and torques of the waist joint
during the lifting and twisting motion are plotted in Figs. 11 and
12, respectively. The joint angles of the spherical joint are rep-
resented by XYZ Euler angles. The joint velocities represent the
relative angular velocities of the joint coordinates with respect
to their parent coordinates. In both figures, the top three graphs
plot the components of the joint angles of the spherical joint,
the middle three plot the joint velocities, and the bottom three
graphs plot the joint torques. Solid lines indicate the values for
the original human motion and the dotted ones indicate those of
the reconstructed motion. Since the twisting motion was slowed
down due to limitations of the robot hardware, the total times of
the original human motion and the reconstructed motion differ,
whereas the motion speeds were the same for the lifting motion.
In order to compare the velocities and torques, each time axis is
normalized to the total time period of the motion.

In Fig. 11, all components of the reconstructed values are
close to those of the original ones, which indicates that the re-
targeted bending motion preserved the original pattern of the
human trajectory. There is a slight difference in the joint angles
when the normalized time is between 0.3 and 0.7. This diver-
gence is due to the limits of robot chest joints, as discussed
above. Slight differences in the joint velocities also occur due
to a sudden change in the joint angles when reaching the limit.
Fig. 12 shows that the reconstructed motion failed to preserve
the geometric pattern along the x-axis. The error in the joint
angle is large, especially when the normalized time is between
0.2 and 0.5. During this period, the robot’s hip joint reached its
limit and the human waist joint is assumed to compensate the
generated error. Though the errors in the y- and z-axis angles are
small, the same phenomenon appears. Since the reconstructed
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Fig. 11. Joint angles, velocities, and torques of the spherical waist joint during
the lifting motion. The top three graphs show x, y, and z components of joint
angles represented by XYZ Euler angles. The middle three graphs show the
components of waist joint angular velocities and the bottom three plot waist
joint torque. Solid lines indicate the values for the original human motion.
The dotted lines represent the reconstructed human motion. The time axis is
normalized to the total period of the motion. The total times of both the original
and reconstructed motions are 11.8 s.

twisting motion is two times slower than the original one, the
joint velocities of the reconstructed motion are also two times
smaller. In addition, a large acceleration occurs at the joint limi-
tations of the robot, which generates impulses of the joint torque.
The effect of the slowing down operation can be seen in the y-
and z-axis joint torques. However, this effect is relatively small
in the z-axis joint torque because the torque due to gravity in
the twisting motion dominates the body’s inertial torque. On the
other hand, there is a large error in x-axis joint torque due to
that in the joint angles when the normalized time is between 0.2
and 0.6. As can be seen from the above comparisons, our frame-
work enables a quantitative comparative analysis of dynamical
properties in addition to geometric features.

4) Comparative Analysis in Cartesian Space: We next
check the robot’s success in reaching Cartesian space during the
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Fig. 12.  Joint angles, velocities, and torques of the waist spherical joint during
the twisting motion. Graph and line types are the same as those in Fig. 11. The
total time of the original motion is 3.5 s, whereas that of the reconstructed one
is 7.0 s.

two motions, by analyzing the positions of the markers attached
to the tips of the robot’s hand. Figs. 13 and 14 represent three
types of marker positions: the markers measured from the orig-
inal human subject (solid lines), the virtual markers attached
to the robot (dotted lines), and the markers reconstructed onto
the human model with the optimization results (dashed lines).
The robot could perform the reaching task without significant
modification from the original human motion except during the
deepest bend. There is a small error in the z-direction (maximum
7.7 cm) due to the joint limits of the robot. Since the recon-
structed motion is computed with the human geometric model,
the error in the original measured data is smaller than that in
the robot motion. Conversely, Fig. 14 shows large errors in the
y- and z-directions between the original and retargeted motions
(y: maximum 19.5 cm, z: maximum 36.7 cm); meanwhile, the
error between the reconstructed and original motions is slightly
smaller (y: maximum 18.0 cm, z: maximum 26.0 cm). The
differences between the retargeted motion and the reconstructed
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Fig. 13.  Cartesian positions of the marker attached on the tip of the hand during
the bending motion. The solid lines show the positions of the original human
motion. The dotted lines mean the positions of the virtual markers attached on
the robot model during the retargeted motion. The dashed lines indicate the
reconstructed positions of the markers from the human model according to the
result of the retargeting. The time axis is normalized by total time period of the
motion. The total time of each motions is 11.8 [s].

motion are due to the different geometric parameters of the
human model and the robot. These results imply the following:
for the twisting motion, the robot is limited in simultaneous
movements involving the pitch and yaw axes of the waist and
the y- and z-directions of the hand. These findings are useful
for future improvements or novel robot hardware designs.

As mentioned in Section II, the reconstructed human motion
originally reflects modifications according to the retargeting pro-
cess. In other words, such reconstructed motions can be imitated
by the robot without modification according to the constraints
on the robot. Therefore, they can be regarded as candidate hu-
man motions that can be imitated by the robot without losing the
original geometric features of the motion. If such reconstructed
motions can be performed by an actual human subject, we can
investigate the reconstructed motions using several techniques
of human motion analysis, such as inverse dynamics analysis
in Section I'V-B3. For practical applications [5], we especially
need to check whether the reconstructed twisting motion can be
useful for the quantitative evaluation of assistive devices, which
will be addressed in future work.

5) Comparison When Using Different Human Models:

Since the mapping function can take an implicit form as shown
in (1), which includes unknown geometric parameters, the total
DOF of a human model can be different from that of the tar-
get robot. A redundant-jointed human model with 51 DOF in
Fig. 4 was used in the experiments reported in the previous sub-
sections. We now investigate the role played by the redundant
joints in the human model in the proposed retargeting method.

Two different types of human models were examined in this
validation. The first model is the same 51-DOF model that is

IEEE TRANSACTIONS ON ROBOTICS

1
= =
o)) o W

1
>SS oo
E S R N S TN

—_
W

—

Marker position attached on right hand [m]

0.5+ ‘ feconstracted b
Z llll original
0 1 I 1 t £
0 0.2 0.4 0.6 0.8 1.0
Time normalized by total time period of motion
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during the twisting motion; line types are the same as in Fig. 13. The total time
of the original human motion is 3.5 [s], and the other two are 7.0 [s].

shown on the right side of Fig. 4. The second model was pre-
pared by locking the redundant DOF of the first model in order
to realize the same 31 DOFs as the robot model. The main differ-
ence from the original model is that the sternoclavicular joints
are fixed to the initial standing posture. An additional spherical
joint on the thoracic spine in the 51-DOF model is also fixed
at the initial posture. Some of the spherical joints in the origi-
nal model, such as elbow and knee joints, are also changed to
rotational ones in the second model.

The two human models were tested by retargeting an arm
movement that resembles turning a handle located overhead.
Snapshots of the measured human motion are shown at the top
of Fig. 15. The retargeted results when using the 51- and the
31-DOF models are shown in the middle and bottom panels of
Fig. 15, respectively. This arm movement is difficult to imitate
due to the movement range of HRP-4. The retargeted motion
when using the 51-DOF model appeared similar to the original
motion. When retargeting with the 31-DOF model, however,
the position and orientation of the right hand could often not
be imitated, as shown in Fig. 15; in the original human motion,
the palms are almost facing each other during the motion. The
locations of the retargeted arms in the second case tend to be
higher than those of the arms in the first case. The corresponding
human marker trajectories were also reconstructed. The average
position errors between the original and reconstructed markers
are 2.2 cm in the first case and 3.2 cm in the second case.
Therefore, retargeting with the 51-DOF redundant-jointed hu-
man model performed better.

Let us now check how each human model was mapped onto
the robot model when retargeting the arm movements. The mor-
phed human models are shown in Fig. 16; the left figure shows
the morphed result of the 51-DOF model, whereas the right
figure shows that of the 31-DOF model. In Fig. 16, the joint
angles of the 31-DOF model are equal to those in the initial
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given in the middle and bottom, respectively.

Sternoclavicular joint

Acromioclavicular
joint

51-DOF model 31-DOF model

Fig. 16.  Comparison of the morphed human models; the left figure shows the
result when using the 51-DOF model, and the right one is obtained from the
31-DOF model.

standing posture. On the other hand, for the 51-DOF model,
the redundant joints are constrained during the retargeting pro-
cess, and finally, reach almost constant values, which are de-
termined after the retargeting process. In the model of Fig. 16,

Snapshots of arm motion. The figures in the top row show the captured motion. The retargeting results when using 51- and 31-DOF human models are

the joint angles corresponding to the redundant-joint coordi-
nates are set at the averaged values during the arm movement
and the joint angles in the 31-DOF model remain the initial
posture.

In the left figure of Fig. 16, the position of the acromio-
clavicular joints is higher than that of the sternoclavicular joints
because the position of both arms stays higher than the shoulders
during the handle-turning movement. The right side of Fig. 16
shows that the position of acromioclavicular joints is lower be-
cause their joint angles are fixed to the initial standing posture.
The geometric parameters are modeled with virtual translational
joints, as shown in Fig. 4; one virtual translational joint is located
between the acromioclavicular and sternoclavicular joints. The
coordinate of the sliding joint stands for the length between the
two joints, and changing this value can scale the model along
the axis connecting the two joints. In the configuration of the ge-
ometric parameters, the direction of the axis is fixed according
to the initial posture during retargeting when using the 31-DOF
model. On the other hand, in the case of the 51-DOF model,
the direction of the axis connecting the two joints is determined
according to the redundant joint angles obtained after motion
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Fig. 17.  Comparison of the body scale between the human subject model and
the robot (left: twisting motion, middle: lifting motion, right: arm motion).

retargeting. This direction is optimal for minimizing the fitting
error from the original human motion. If the best initial location
of the shoulder joints can be determined in advance, the retar-
geting results with a 31-DOF model will be, of course, almost
same as when using the 51-DOF model. The geometric parame-
ter identification can automatically find the optimal parameters.

The above results can be summarized as follows. When
modeling the human subject with redundant joints, the angles
are constrained according to the morphing function. The con-
strained joint angles then serve as new morphing parameters that
iteratively make the morphing function more exact. The optimal
constrained joint angles can differ according to different human
motions. The geometric parameter identification process can
automatically find the best parameters.

Note that the geometric parameter identification process
can accommodate differences in proportion among human
subjects. A comparison of the body properties of the human
subject model and the robot is visualized in Fig. 17, the left
figure shows a pair of models performing the twisting motion,
the middle illustrates the lifting motion, and the right shows
the handle-turning movements. Different subjects provide
motion-capture data for each motion. A 160-cm-tall subject
performs the twisting motion, a 168-cm-tall subject performs
the lifting motion, and a 174-cm tall subject performs the arm
movement; the height of HRP-4 is 151 cm.

V. CONCLUSION

This paper has proposed a motion retargeting method for
humanoid robots that preserves features of the original mo-
tion and serves up comparative evaluations of the results. Our
method estimates geometric and morphing parameters simul-
taneously during motion retargeting in response to physically
consistent conditions of the robot. While several related stud-
ies have solved the above problems sequentially, the proposed
method solves them simultaneously as a single optimization
problem. Simultaneous optimization offers better performance
in matching the original human motion. The method also pro-
duces a human virtual motion that reflects the modifications re-
quired for the robot’s range of motion and dynamical properties.
This reconstructed virtual motion enables a quantitative analy-
sis of the retargeting results through the direct comparison of
the reconstructed motion and the original motion-capture data.
The method can accommodate human models with more DOF
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than the robot model. Redundant joint angles such as shoulders
are represented as pseudomorphing parameters, which enable
precise morphing between the human and the robot. The si-
multaneous geometric identification algorithm provides their
optimal values for geometric values as well as subject-specific
parameters. Therefore, the method can accommodate the vary-
ing physical properties of individual human subjects.

We tested our method with the humanoid robot HRP-4, which
could perform the retargeted motions without toppling over. To
clarify the advantage of simultaneous optimization, we com-
pared results of conventional sequential optimization with those
of our simultaneous optimization algorithm; the simulations op-
timization showed better performance. We also reconstructed a
human motion corresponding to the retargeted waist movement
and compared angles, velocities, and torques of the waist joint
and the Cartesian position of the hands. All these features were
imitated accurately, except when bending deeply beyond the
robot’s range of motion. Such comparison clarifies that physical
quantities are modified during the retargeting process. We also
evaluated our framework by retargeting a complex arm move-
ment. We used two human models, one with the same DOF as
that of the robot and the other with several redundant joints.
The redundant jointed human model performed better because
of the redundant shoulder joints. This test also showed that the
geometric parameter identification algorithm can handle various
sizes of human subjects.

The reconstructed virtual motion can help us to identify can-
didate human motions that the robot can imitate well within its
operational range. Though the paper mainly focuses on retar-
geting geometric features, the retargeting of dynamical features
such as forces and ZMP is a topic for future research. We expect
to generalize the proposed optimization framework by incorpo-
rating identification techniques for inertial parameters [31] in
future work.

For applications such as evaluating assistive devices [5], robot
must imitate human motion as closely as possible. Such eval-
uations for industrial standards require quantitative evaluation
criteria for the accuracy of a robot imitation, which the method
above provides. We have also begun to test the proposed re-
targeting method on an actual evaluation of assistive devices
with a humanoid robot [32], [33]. We also propose to investi-
gate the usefulness of having human subjects perform motions
reconstructed from the retargeted process in the future.
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