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Abstract
The approximation of a humanoid robot by an inverted pendulum is one of the most frequently used models
to generate a stable walking pattern using a planned zero moment point (ZMP) trajectory. However, on
account of the difference between the multibody model of the humanoid robot and the simple inverted
pendulum model, the ZMP error might be bigger than the polygon of support and the robot falls down.
To overcome this limitation, we propose to improve the accuracy of the inverted pendulum model using
system identification techniques. The candidate model is a quadratic in the state space representation. To
identify this system, we propose an identification method that is the result of the comprehensive application
of system identification to dynamic systems. Based on the quadratic system, we also propose controlling
algorithms for on-line and off-line walking pattern generation for humanoid robots. The efficiency of the
quadratic system and the walking pattern generation methods has been successfully shown using dynamical
simulation and conducting real experiments on the cybernetic human HRP-4C.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2011
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1. Introduction

Research on biped humanoid robots is nowadays one of the most active research
fields in robotics. Making humanoid robots walk has been the subject of intensive
investigation over recent years. Many researchers have proposed different methods
to generate a stable walking motion for a humanoid robot [1–8]. Most of these
methods use a simplified model based on the approximation of the humanoid robot
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by an inverted pendulum model. The mass of the inverted pendulum coincides with
the centre of mass (CoM) of the humanoid robot.

In order to generate a stable motion (dynamically balanced), those methods use
the zero moment point (ZMP) principle [9]. The ZMP is a point of the support
polygon (i.e., the convex hull of all points of contact between the support foot (feet)
and the ground) at which the horizontal moments are vanishing.

The cart-table model proposed by Kajita et al. [3] is one of these methods. The
efficiency of this method has been proved by generating on-line stable walking
motions using a planned trajectory of the ZMP.

Some methods have been proposed to compensate for the error between the sim-
ple inverted pendulum model and the multibody model of the humanoid robot [10,
11]. To achieve the same goal, however, the purpose in this paper is to show that
the linear model related to the cart-table model can be improved by capturing the
dynamic difference between the the multibody model of the humanoid robot and
that of the cart-table model, then identifying a quadratic system [12] that is able to
approximate this difference. Furthermore, we aim to give insights into the problem
of controller design of the quadratic system in order to generate dynamically stable
walking patterns. The dynamic balance of the humanoid robot during the execution
of the ZMP trajectory is subject to several perturbations, such as inaccuracy of the
dynamic and kinematics parameters, and the flexibility in some joints of the hu-
manoid robot. However, by guaranteeing that the ZMP trajectory is always inside
a safety margin of stability, the on-line stabilizer can ensure the dynamic balance
of the humanoid robot. Therefore, the dynamic stability is guaranteed by tracking
a predefined ZMP trajectory that is always inside the polygon of support while re-
specting a safety margin.

The proposed controlling algorithms are classified into two categories:

(i) Off-line walking pattern generation algorithms: in this category the compu-
tational time is not considered and the objective is to track the desired ZMP
trajectory precisely.

(ii) On-line walking pattern generation algorithms: in this category the computa-
tional complexity of the controller should respect the real-time constraints. In
this case, the desired ZMP trajectory is tracked as much as possible.

This paper is organized as follows. An overview of the cart-table model and the
proposed model to improve the reliability of the cart-table model is discussed in
Section 2. An adapted identification method for the identification of the quadratic
system is developed in Section 3. Section 4 points out the problem of design-
ing a controller to track a desired ZMP trajectory. The efficiency of the proposed
quadratic system and the walking generation algorithms is shown in Section 5
through real experiments on the cybernetic human HRP-4C [13].
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Figure 1. Cart-table model.

2. Cart-Table Model and Quadratic System

The main idea of the cart-table model [3] is to approximate the humanoid robot by
a mass located at its CoM and it is equal to the total mass of the humanoid robot.
Therefore, the complex problem of controlling the humanoid robot is transformed
to the control of an inverted pendulum.

Let us define the Cartesian position of the CoM (PCoM) by:

PCoM =
⎡
⎣

x

y

zc

⎤
⎦ . (1)

We suppose that the vertical position of the mass zc is constant.
The ZMP is a particular point of the horizontal plane at which the horizontal

moments vanish. For the inverted pendulum, it is defined as:

ZMP =
[

px

py

]
=

⎡
⎣

x − zc

g
ẍ

y − zc

g
ÿ

⎤
⎦ , (2)

where g is the absolute value of gravity acceleration.
It is clear from (2) that the two elements of the ZMP are very similar. For that, in

the following, we only consider how to build the controller for px .
To control px , Kajita et al. [3] proposed to consider the cart-table model that is

shown in Fig. 1. It depicts a running cart of mass m on a pedestal table whose mass
is negligible.

2.1. Controlling the ZMP

Let us define a new variable ux as the time derivative of ẍ:

ux = dẍ

dt
. (3)

The variable ux is usually called the jerk.
Regarding ux as the input of px , we can translate the equation of px into the
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following dynamic system:

d

dt

⎡
⎣

x

ẋ

ẍ

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦

⎡
⎣

x

ẋ

ẍ

⎤
⎦ +

⎡
⎣

0
0
1

⎤
⎦ux

(4)

px =
[

1 0 −zc

g

]⎡
⎣

x

ẋ

ẍ

⎤
⎦ .

As the humanoid robot is controlled in discrete time, we discretize the system (4)
with sampling time Ts; the discrete control model for px can be expressed by:

zk+1 = Azk + Būk
(5)

pk = Czk,

where:

zk � [x(kTs) ẋ(kTs) ẍ(kTs) ]T

ūk � ux(kTs)
(6)

pk � px(kTs)

A =
⎡
⎣

1 Ts T 2
s /2

0 1 Ts

0 0 1

⎤
⎦ , B =

⎡
⎣

T 3
s /6

T 2
s /2
Ts

⎤
⎦ , C =

[
1 0 −zc

g

]
.

Regarding the similarity between the equations of px and py , the above equation
can be extended to obtain the ZMP-based control model as:

Xk+1 = A1Xk + B1uk
(7)

pk = C1Xk,

where:

Xk �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(kTs)

ẋ(kTs)

ẍ(kTs)

y(kTs)

ẏ(kTs)

ÿ(kTs)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, uk �
[

ux(kTs)

uy(kTs)

]
, pk �

[
px(kTs)

py(kTs)

]
(8)

A1 = I2 ⊗ A, B1 = I2 ⊗ B, C1 = I2 ⊗ C.

I2 ∈ R
2×2 is the identity matrix and ⊗ is the operator of Kronecker product, which

is defined as follows: X ∈ R
m×n, Y ∈ R

p×l :

X ⊗ Y ∈ R
mp×nl �

⎡
⎢⎣

x11Y · · · x1nY
...

. . .
...

xm1Y · · · xmnY

⎤
⎥⎦ , (9)
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Figure 2. ZMP model of the humanoid robot regarded as a quadratic system.

where xij is the element of the ith line and the j th column of the matrix X.
The above model has been used to generate a stable biped waking pattern using

a preview controller [3]. However, when the error between the output of this model
and the real ZMP trajectory of the humanoid robot becomes bigger than the stability
margin, then the robot falls down. The solution proposed by Kajita et al. [3] is to
inject this error in the preview controller as a second stage in order to eliminate
the dynamic error. However, this procedure requires the dynamic simulation of the
multibody model of the humanoid robot; as a result, it is a time-consuming process.

To overcome this problem, we propose to model the ZMP of the humanoid robot
by the model given in Fig. 2. This model consists of two blocks: (i) the previous
cart-table model and (ii) a linear system with respect to the input uk ⊗ Xk .

The obtained model is a quadratic system in the state space representation. This
realization of the quadratic system is given by:

Xk+1 = A1Xk + B1uk

Zk+1 = A2Zk + B2(uk ⊗ Xk) (10)

pk = C1Xk + C2Zk,

where uk ∈ R
2 is the input signal of the system expressed as in (8). pk ∈ R

2 is the
output of the system (ZMP).

{Xk,Zk} are the states, the dimension of Xk is equal to 6 and the dimension of Zk

is n, which will be determined by the identification algorithm.
We have proven [12, 14] that this class of nonlinear system is a special case of

the Volterra series of degree 2. This class can play a useful role to model many real
systems in practice.
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3. System Identification

It is clear that the system is defined by the coefficient matrices of (10). The unknown
matrices are A2, B2 and C2. That means that the structure parameters can be given
by

θ =
⎡
⎣

vec(A2)

vec(B2)

vec(C2)

⎤
⎦ , (11)

where vec(·) denotes the vectorization operator, which is defined as follows

vec : M ∈ R
m×n → R

m·n

vec(M) = vec [m1 m2 · · · mn ] = [mT
1 mT

2 · · · mT
n ]T .

Given the input uk and the output pk of the real system, our goal is achieved if the
output of the following model:

X̂k+1 = A1X̂k + B1uk

Ẑk+1(θ) = A2(θ)Ẑk(θ) + B2(θ)(uk ⊗ X̂k) (12)

p̂k(θ) = C1X̂k + C2(θ)Ẑk(θ),

approximates the output pk of the real system accurately enough.
This criterion can be transformed into the minimization of the output error with

respect to the parameter θ . Considering a data set of N samples, the output error
cost function is given by:

JN(θ) = 1

N

N∑
k=1

‖pk − p̂k(θ)‖2
2 = 1

N
EN(θ)TEN(θ), (13)

where EN(θ) = [e(1)Te(2)T · · · e(N)T]T is the error vector in which e(k) = pk −
p̂k(θ). The minimization of (13) is a nonlinear, nonconvex optimization problem.
The numerical solution of this problem can be calculated by different algorithms.
For instance, the iterative gradient search method is a popular one. This iterative
method is based on the updating of the system parameters θ̂ as follows:

θ̂ i = θ̂ i−1 − (ψT
N(θ̂ i−1)ψN(θ̂ i−1) + λiI )−1ψT

N(θ̂ i−1)EN(θ̂ i−1), (14)

where λi is the regularization parameter and:

ψN(θ) � ∂EN(θ)

∂θT , (15)

is the Jacobian of the error vector EN(θ).

3.1. Multiple-Experiment Identification

In fact, the model obtained by considering a single experiment might be not reli-
able [15]. This is because the input signals are not perfectly excited. To overcome
this problem in identifying practical applications, we apply various sets of input
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signals. The objective of each set is exciting one or more modes of the system.
The multiple experiments should be exploited simultaneously to obtain an accurate
model of the system.

The optimization problem that considers K experiments simultaneously can be
formulated as:

JK(θ) = 1

K

K∑
i=1

1

Ni

Ni∑
k=1

‖pi
k − p̂i

k(θ)‖2
2 = 1

K
EK(θ)TEK(θ), (16)

where:

EK(θ) = [E1
N1

(θ)TE2
N2

(θ)T · · ·EK
NK

(θ)T]T, (17)

and:

Ei
Ni

(θ) = 1√
Ni

[ei(1)Tei(2)T · · · ei(Ni)
T]T, (18)

is the error vector in which ei(k) = pi
k − p̂i

k(θ). pi
k is the output of the system

according to the input ui
k .

The estimated output p̂i
k(θ) of the data set number i is given by:

X̂i
k+1 = A1X̂

i
k + B1u

i
k

Ẑi
k+1(θ) = A2(θ)Ẑi

k(θ) + B2(θ)(ui
k ⊗ X̂i

k) (19)

p̂i
k(θ) = C1X̂

i
k + C2(θ)Ẑi

k(θ).

The minimization of (16) can be calculated, similarly to the case of a single
experiment, by using the iterative gradient search method as:

θ̂ l+1 = θ̂ l − (ψT
K(θ̂ l)ψK(θ̂ l) + λlI )−1ψT

K(θ̂ l)EK(θ̂ l), (20)

where:

ψK(θ) =

⎡
⎢⎢⎢⎢⎣

ψ1
N1

(θ)

ψ2
N2

(θ)

...

ψK
NK

(θ)

⎤
⎥⎥⎥⎥⎦

(21)

and:

ψi
Ni

(θ) �
∂Ei

Ni
(θ)

∂θT , (22)

is the Jacobian of the error vector Ei
Ni

.
In order to apply the identification algorithm, the input and output signals are

supposed to be known. In our case, a sequence of walking patterns has been de-
ployed to identify the quadratic system. The input data sets have been calculated
using the method proposed by Kajita et al. [3] by defining the ZMP trajectories (the
output signals).
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3.2. Implementation Algorithm of the Identification Method

The first step in applying the identification algorithm is determining the optimal
dimension (n) of the state Zk . In order to achieve this task, a method based on
oblique projection and the subspace identification method can be used (for more
details, refer to Refs [12, 14]). Another strategy is to choose n arbitrarily and then
change this value in order to obtain the quadratic system that fits accurately with
the response of the real system.

Then, the implementation of the system identification algorithm can be summa-
rized as:

Calculate the state X̂i
k , Ẑi

k and p̂i
k by simulating system (19) with θ = θ̂ j−1.

Compute Ei
Ni

(θ) using (18).

Calculate the matrix ψK using (21) and (22).

Calculate the update rule of the gradient search algorithm using (20) and ob-
tain θ̂ j .

Perform the termination test for minimization. If true, the algorithm stops.
Otherwise, return to Step (i), i.e., compute the values JL(θ̂ j−1) and JL(θ̂ j )

using (16), and test if ‖JL(θ̂ j ) − JL(θ̂ j−1)‖2 is small enough.

The above algorithm yields the matrices A2,B2 and C2. Once the quadratic sys-
tem is identified, not only the behavior of ZMP can be predicted using this model,
but also the problem of ZMP servo tracking can be addressed as well.

4. Controller Design

The problem of designing a controller to follow a desired ZMP trajectory can be
formulated as:

min
uk

N∑
k=0

uT
k Quuk + (pref

k − pk)
TQe(p

ref
k − pk) subject to

Xk+1 = A1Xk + B1uk
(23)

Zk+1 = A2Zk + B2(uk ⊗ Xk)

pk = C1Xk + C2Zk,

where pref
k designs the desired ZMP trajectory and N is the number of last sampling

of the trajectory.
In this section we propose one algorithm for off-line control and two algorithms

for on-line control of the quadratic system. The off-line algorithm is useful, for
instance, in the case of motion planning. In this case, the path of the humanoid robot
is provided off-line. However, for reactive motions and human–robot interactions,
the on-line control algorithms are crucial.
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4.1. Off-Line Walking Pattern Generation Algorithm

It is well known that the space of the admissible solutions of the minimization
problem (23) is very large. In order to transform this space to a smaller dimensional
space, we can use a basis of shape functions.

Let us consider a basis of shape functions Sk that is defined as:

Sk = [S1
k S2

k · · · Sl
k ]T , (24)

where Si
k denotes the value of the shape function number i at the instant k. The

dimension of Sk is l, which defines the dimension of the basis of shape functions.
The projection of uk into the basis of shape functions Sk can be given by:

uk = (I2 ⊗ Sk)
TuS, (25)

where I2 ∈ R
2×2 denotes the identity matrix and uS ∈ R

2l denotes the vector of
B-spline functions control points.

Thus, the optimization problem (23) can be rewritten as:

min
uS

L∑
k=0

uT
S(I2 ⊗ Sk)Qu(I2 ⊗ Sk)

TuS + (pref
k − pk)

TQe(p
ref
k − pk) subject to

Xk+1 = A1Xk + B1(I2 ⊗ Sk)
TuS

(26)
Zk+1 = A2Zk + B2([(I2 ⊗ Sk)

TuS] ⊗ Xk)

pk = C1Xk + C2Zk.

By defining the following variables:

J =
L∑

k=0

uT
S(I2 ⊗ Sk)Qu(I2 ⊗ Sk)

TuS + (pref
k − pk)

TQe(p
ref
k − pk)

H =
⎡
⎣

Xk+1 − A1Xk − B1(I2 ⊗ Sk)
TuS

Zk+1 − A2Zk − B2([(I2 ⊗ Sk)
TuS] ⊗ Xk)

pk − C1Xk − C2Zk

⎤
⎦ ,

the optimization problem (26) is transformed into the following classical optimiza-
tion problem:

min
uS

J (uS) subject to H(uS) = 0. (27)

In other words, the optimization problem has been transformed into finding the
vector uS ∈ R

2l . Note that the trajectory of the CoM of the robot can be directly
obtained from Xk by applying the input signal uk to the quadratic system (10).

4.2. On-Line Walking Pattern Generation Algorithm I

The idea of this algorithm is to linearize the quadratic system and then control the
linearized system. The linearized system of quadratic system (10) around the value
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Xk = X� is given by:

Xk+1 = A1Xk + B1uk

Zk+1 = A2Zk + B2(uk ⊗ X�) (28)

pk = C1Xk + C2Zk.

Let us define the matrix B2,j as:

B2,j = B2(:, (j − 1)n1 + 1 : jn1), (29)

where n1 denotes the dimension of Xk (in our case n1 = 6) and the notation
M(:, i : j) designs the submatrix of matrix M that contains the columns from the
ith to j th column.

Using (29), the variable B2(uk ⊗ X�) can be formulated as:

B2(uk ⊗ X�) = [B2,1X
� B2,2X

� · · · B2,mX� ]uk

� B�
2uk. (30)

Using the above definitions, the linearized system (28) can be reformulated as:

Xk+1 = A Xk + Buk
(31)

pk = C Xk,

where:

Xk =
[

Xk

Zk

]
, A =

[
A1 0
0 A2

]
,

(32)

B =
[

B1 0
0 B�

2

]
, C = [C1 C2 ] .

Therefore, the controller design problem (23) is transformed into the following
problem:

min
uk

L∑
k=0

uT
k Quuk + (pref

k − pk)
TQe(p

ref
k − pk) subject to

Xk+1 = A Xk + Buk (33)

pk = C Xk.

The above optimization problem is well known in automatic control as the pre-
view control of a linear system. The optimal input signal (uk) can be obtained by
applying the classical linear-quadratic state-feedback regulator (LQR) technique.
Thus, when the ZMP reference is previewed for NL future steps at every sampling
time, the optimal controller that minimizes the objective function (33) is given by:

uk = −KXk + [f1 f2 · · · fNL
]

⎡
⎢⎢⎢⎣

pref
k+1

pref
k+2
...

pref
k+NL

⎤
⎥⎥⎥⎦ , (34)
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where K and fi are calculated as:

K = (Qu + BTPB)−1BTPA
(35)

fi = (Qu + BTPB)−1BT(AT − KTBT)(i−1)C TQe.

P is the solution of the following Riccati equation:

P = ATPA + C TQeC − ATPB(R + BTPB)−1BTPA. (36)

Note that the linearized system (28) is valid for a region around the value Xk =
X�. Therefore, a threshold ε > 0 should be defined and the linearized system is
updated with the new value of Xk if ‖Xk − X�‖ > ε.

The trajectory of the CoM can be obtained directly from Xk by simulating the
quadratic system (10) using the control signal uk , which is the result of applying
the above control algorithm.

4.3. On-Line Walking Pattern Generation Algorithm II

The key idea of this algorithm can be summarized as follows:

(i) Controlling the quadratic system as a linear system. The approximated linear
system is the linear subsystem (cart-table model) of the quadratic system.

(ii) Calculating the error between the dynamic simulation of the linear system and
the quadratic system.

(iii) Correcting the error by considering it as perturbation and calculating the ap-
propriate input signal to decrease its effect.

Note that this algorithm works well when the dominant part of the system’s dy-
namic is the linear part. It is, however, the case of the walking motion.

Therefore, at first the optimization algorithm (23) is transformed into the follow-
ing problem:

min
uk

L∑
k=0

uT
k Quuk + (pref

k − pk)
TQe(p

ref
k − pk) subject to

Xk+1 = A1Xk + B1uk (37)

pk = C1Xk.

Analogously to the previous control algorithm, the above optimization problem can
be solved using the LQR technique.

The second step is to find the error between the outputs of the linear subsystem
and the quadratic system by simulating the systems (37) and (10) using the optimal
input signal uk , and obtain:

�pref
k = C2Zk. (38)

In order to decrease the effects of this error, one can considered it as an external
perturbation and apply the LQR technique once more to calculate the variation of
the input signal that should be added to the optimal uk obtained from solving (37).
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Thus, the new LQR problem can be formulated as:

min
uk

L∑
k=0

�uT
k Qu�uk + (�pref

k − �pk)
TQe(�pref

k − �pk) subject to

Xk+1 = A1Xk + B1�uk (39)

�pk = C1Xk.

Analogously to (37) the variation of the input signal �uk can be obtained. As a
result the input signal that should be applied to the humanoid robot becomes u�

k =
uk + �uk .

5. Experimental Results

5.1. Humanoid Robot: Kinematic Structure

The proposed walking patterns generation algorithms have been validated using
the cybernetic human HRP-4C[13]. HRP-4C is a life-size humanoid robot that
was developed for entertainment use, such as a fashion model, master of cere-
monies of various events, etc. For these applications, it has been decided to make
it more human-like than the humanoid robots that have been developed so far [16,
17]. In order to realize a human-like shape, its dimensions are designed referring
to a database of Japanese women of the 20th century (Table 1) [18]. The basic
joint configurations are shown in Fig. 3 (right) (face and hand joints are not dis-
played).

5.2. Identification of the Quadratic System

In order to identify the quadratic system, we have simulated several walking pat-
terns with different step length and walking speed values. We define the model

Table 1.
Specifications of the cybernetic human HRP-4C

Degrees of freedom arm 6
hand 2
leg 6

waist 3
neck 3
face 8
total 42

Height 158 cm
Weight (including batteries) 43 kg
Sensors force/torque sensor × 2, inertia sensor
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Figure 3. Exterior and joint configuration of cybernetic human HRP-4C (face and hand joints are not
displayed).

accuracy as the percent variance accounted for (%VAF)

%VAF �
(

1 −
∑L

k=1 (pk − p̂k)
T
(pk − p̂k)∑L

k=1 (pk − p̄k)T(pk − p̄k)

)
× 100,

where p̂k denotes the estimated output signal (the output of the quadratic system)
and p̄k is the mean value of the real output of the system pk (ZMP trajectory of the
multibody model; Fig. 4).

The optimal dimension of the state Zk has been calculated according to the pro-
cedure explained in Ref. [14] and we obtained n = 8.

In order to validate the identified model, the number of conducted simulation
walking patterns and the accuracy of the identified quadratic system model are given
in Table 2.

Depending on the accuracy reported in Table 2, we have chosen the identified
model that is the result of using 10 walking patterns. In Fig. 5, we observe that the
quadratic system is perfectly able to capture the dynamic difference between the
multibody model and the simple cart-table model. For more details on the identifi-
cation procedure, refer to Ref. [19].

5.3. Results

5.3.1. Off-Line Walking Pattern Generation Algorithm
The application of the off-line walking pattern generation algorithm in order to
track a desired trajectory of the ZMP is applied to the cybernetic human HRP4-C.
We have chosen a basis (Sk) of 40 B-spline functions. The optimization algorithm
stops when the norm of the error between the planned ZMP (pref) and the output
of the quadratic system is less than 10−4 m. The ZMP error between the multibody
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Figure 4. Reference ZMP trajectory (dashed lines), ZMP of the multibody model (solid lines) and
safety region of stability (dotted lines).

Table 2.
Accuracy of the identified model

Number of experiments Accuracy of the proposed model (%VAF)

2 89.7
5 93.1

10 97.2

model of the humanoid robot and the planned ZMP trajectory (pref) is given in
Fig. 6.

From Fig. 6 we can conclude:

(i) The planned ZMP trajectory is well tracked by the proposed controller.

(ii) The error between the ZMP of the multibody model of the humanoid robot and
the planned ZMP trajectory (pref) is small enough (less than 2 cm) and the
ZMP stays always inside of the region of stability. Moreover, this proves that
the quadratic system is an accurate model of the walking motion.

In order to validate the obtained results, we have simulated the generated mo-
tion using the dynamic simulator OpenHRP3 [20, 21]. Snapshots of the simulated
walking pattern are given in Fig. 7.

5.3.2. On-Line Walking Pattern Generation Algorithm I
In this experiment, we apply the on-line walking pattern generation algorithm I to
generate the CoM trajectory in order to track the desired trajectory of ZMP. The
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Figure 5. ZMP error between the multibody model of a humanoid robot and the simple cart-table
model (solid line), and the output of the second block of the quadratic system (dashed line).

(a) (b)

Figure 6. Off-line walking pattern generation algorithm: the ZMP error between the multibody model
of the humanoid robot and the planned ZMP trajectory (pref) (solid line), and the safety margin of
stability (dashed line). (a) The x element (perr

x ). (b) The y element (perr
y ).

ZMP error between the multibody model of the humanoid robot and the planned
ZMP trajectory (pref) is given in Fig. 8.

From Fig. 8, we observe that the ZMP trajectory is always inside the safety region
of stability. However, the ZMP tracking error is bigger than that of off-line walking
pattern generation. On the other hand, this controller can be applied on-line on
account of its low computational complexity.
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Figure 7. Off-line walking pattern generation algorithm: snapshots of the simulated walking motion.

(a) (b)

Figure 8. On-line walking pattern generation algorithm I: the ZMP error between the multibody model
of the humanoid robot and the planned ZMP trajectory (pref) (solid line), and the safety margin of
stability (dashed line). (a) The x element (perr

x ). (b) The y element (perr
y ).

Snapshots of the real experiment conducted on the cybernetic human HRP-4C
are given in Fig. 9.

5.3.3. On-Line Walking Pattern Generation Algorithm II
Analogously to the previous case, we apply the on-line walking pattern generation
algorithm II to generate the CoM trajectory in order to track the desired trajectory
of the ZMP. The ZMP error between the multibody model of the humanoid robot
and the planned ZMP trajectory (pref) is given in Fig. 10.
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Figure 9. On-line walking pattern generation algorithm I: snapshots of the real experiment using the
cybernetic human HRP-4C.

(a) (b)

Figure 10. On-line walking pattern generation algorithm II: the ZMP error between the multibody
model of the humanoid robot and the planned ZMP trajectory (pref) (solid line), and the safety margin
of stability (dashed line). (a) The x element (perr

x ). (b) The y element (perr
y ).

From Fig. 10, we observe that the ZMP tracking error becomes bigger. However,
the ZMP is always inside the safety region of stability and the dynamic stability of
the walking patterns has been verified using the dynamical simulator OpenHRP3.

6. Discussion and Conclusions

In this paper, we proposed a new nonlinear model in order to approximate the
dynamic behavior of humanoid robot walking motion. The linear part of the non-
linear model is the cart-table model proposed in Ref. [3]. The nonlinear model is a
quadratic system that is a special case of the Volterra series. The main advantage of
this model is not only predicting the ZMP trajectory of the humanoid robot without
the calculation of the multibody dynamics, but also providing the trajectory of the
CoM of the humanoid robot in order to track the planned ZMP trajectory.
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To identify the quadratic system, we proposed an adapted identification algo-
rithm. This algorithm is based on using multiple walking patterns in order to iden-
tify an accurate model. Moreover, the problem of controller design of the quadratic
system has also been investigated. We proposed on-line and off-line walking pat-
tern generation algorithms based on controlling the quadratic system. Even though
the off-line walking pattern generation algorithm can track the planned ZMP tra-
jectory precisely, the computational time is not adequate for real-time applications.
On the other hand, the on-line walking pattern generation algorithms are devoted
to real-time applications and the ZMP trajectory is tracked as much as possible.
The conducted simulations using the dynamic simulator OpenHRP3 [20, 21] and
the real experiments using the cybernetic human HRP4-C [13] have pointed out
that the ZMP trajectory always stays inside the safety region of stability, and the
generated walking patterns are dynamically stable.

The actual limitation of the proposed model is that when the walking trajecto-
ries are curved, the quadratic system is not accurate enough to capture the ZMP
behavior of the humanoid robot. As a result, the generated CoM trajectory might
yield an unstable walking motion and the robot might fall down. One reason for
this phenomenon is that the input signal of the actual model includes only the jerk
functions of the horizontal projections of the CoM. One might think that including
the rotational velocities of the CoM in the input signal might yield a more accurate
model. This point will be investigated in future work.

Finally, the first obtained results of this challenging problem are encouraging;
thus, enhancing the results to be more robust and accurate is the intent of our future
work.
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