FMO references 1(1999)+1(2000)+1(2001)+2(2002)+4(2003)+7(2004)+10(2005)+17(2006)+20(2007)+ 15(2008)+35(2009)+31(2010)+26(2011)+27(2012)+18(2013)+24(2014)+19(2015)+ 17(2016)+22(2017)+28(2018)+21(2019)+34(2020)+52(2021)+27(2022)+21(2023)+ 7(2024). 1. Fragment molecular orbital method: an approximate computational method for large molecules. K. Kitaura, E. Ikeo, T. Asada, T. Nakano, M. Uebayasi, Chem. Phys. Lett. 313 (1999) 701-706. 2. Fragment molecular orbital method: application to polypeptides. T. Nakano, T. Kaminuma, T. Sato, Y. Akiyama, M. Uebayasi, K. Kitaura, Chem. Phys. Lett. 318 (2000) 614-618. 3. Fragment molecular orbital method: analytical energy gradients. K. Kitaura, S.-I. Sugiki, T. Nakano, Y. Komeiji, M. Uebayasi, Chem. Phys. Lett. 336 (2001) 163-170. 4. Fragment molecular orbital method: use of approximate electrostatic potential. T. Nakano, T. Kaminuma, T. Sato, K. Fukuzawa, Y. Akiyama, M. Uebayasi, K. Kitaura, Chem. Phys. Lett. 351 (2002) 475-480. 5. Definition of molecular orbitals in fragment molecular orbital method. Y. Inadomi, T. Nakano, K. Kitaura, U. Nagashima, Chem. Phys. Lett. 364 (2002) 139-143. 6. Fragment molecular orbital method: application to molecular dynamics simulation, 'ab initio FMO-MD'. Y. Komeiji, T. Nakano, K. Fukuzawa, Y. Ueno, Y. Inadomi, T. Nemoto, M. Uebayasi, D. G. Fedorov, K. Kitaura, Chem. Phys. Lett. 372 (2003) 342-347. 7. Molecular orbital analysis based on fragment molecular orbital scheme. H. Sekino, Y. Sengoku, S.-I. Sugiki, N. Kurita, Chem. Phys. Lett. 378 (2003) 589-597. 8. Fragment molecular orbital method with density functional theory and DIIS convergence acceleration. S.-I. Sugiki, N. Kurita, Y. Sengoku, H. Sekino, Chem. Phys. Lett. 382 (2003) 611-617. 9. Fragment molecular orbital study of the binding energy of ligands to the estrogen receptor. K. Fukuzawa, K. Kitaura, K. Nakata, T. Kaminuma, T. Nakano, Pure Appl. Chem. 75 (2003) 2405-2410. 10. A new hierarchical parallelization scheme: generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO). D. G. Fedorov, R. M. Olson, K. Kitaura, M. S. Gordon, S. Koseki, J. Comp. Chem. 25 (2004) 872-880. 11. The importance of three-body terms in the fragment molecular orbital method. D. G. Fedorov, K. Kitaura, J. Chem. Phys. 120 (2004) 6832-6840. 12. Development of an ab initio MO-MD program based on fragment MO method: an attempt to analyze the fluctuation of protein. T. Ishimoto, H. Tokiwa, H. Teramae, U. Nagashima, Chem. Phys. Lett. 387 (2004) 460-465. 13. On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory. D. G. Fedorov, K. Kitaura, Chem. Phys. Lett. 389 (2004) 129-134. 14. Second order Moeller-Plesset perturbation theory based upon the fragment molecular orbital method. D. G. Fedorov, K. Kitaura, J. Chem. Phys. 121 (2004) 2483-2490. 15. Large scale MP2 calculations with fragment molecular orbital scheme. Y. Mochizuki, S. Koikegami, T. Nakano, S. Amari, K. Kitaura, Chem. Phys. Lett. 396 (2004) 473-479. 16. A parallelized integral-direct second-order Moeller-Plesset perturbation theory method with a fragment molecular orbital scheme. Y. Mochizuki, T. Nakano, S. Koikegami, S. Tanimori, Y. Abe, U. Nagashima, K. Kitaura, Theor. Chem. Acc. 112 (2004) 442-452. 17. Ab initio quantum mechanical study of the binding energies of human estrogen receptor with its ligands: An application of fragment molecular orbital method. K. Fukuzawa, K. Kitaura, M. Uebayasi, K. Nakata, T. Kaminuma, T. Nakano, J. Comp. Chem. 26 (2005) 1-10. 18. Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method. D. G. Fedorov, K. Kitaura, J. Chem. Phys. 122 (2005) 054108. 19. Multilayer formulation of the fragment molecular orbital method (FMO). D. G. Fedorov, T. Ishida, K. Kitaura, J. Phys. Chem. A. 109 (2005) 2638-2646. 20. Theoretical study of intramolecular interaction energies during dynamics simulations of oligopeptides by the fragment molecular orbital-Hamiltonian algorithm method. T. Ishimoto, H. Tokiwa, H. Teramae, U. Nagashima, J. Chem. Phys. 122 (2005) 094905. 21. Configuration interaction singles method with multilayer fragment molecular orbital scheme. Y. Mochizuki, S. Koikegami, S. Amari, K. Segawa, K. Kitaura. T. Nakano, Chem. Phys. Lett. 406 (2005) 283-288. 22. A configuration analysis for fragment interaction. Y. Mochizuki, K. Fukuzawa, A. Kato, S. Tanaka, K. Kitaura, T. Nakano, Chem. Phys. Lett. 410 (2005) 247-253. 23. Coupled-cluster theory based upon the fragment molecular-orbital method. D. G. Fedorov, K. Kitaura, J. Chem. Phys. 123 (2005) 134103. 24. Density functional calculations on the interaction between catabolite activator protein and cyclic AMP using the fragment molecular orbital method. S.-I. Sugiki, M. Matsuoka, R. Usuki, Y. Sengoku, N. Kurita, H. Sekino, S. Tanaka, J. Theor. Comp. Chem. 4 (2005) 183-195. 25. Full Electron Calculation Beyond 20,000 Atoms: Ground Electronic State of Photosynthetic Proteins. T. Ikegami, T. Ishida, D. G. Fedorov, K. Kitaura, Y. Inadomi, H. Umeda, M. Yokokawa, S. Sekiguchi, Proc. of Supercomputing 2005, IEEE Computer Society, 2005. http://sc05.supercomputing.org/schedule/pdf/pap138.pdf 26. Ab initio fragment molecular orbital (FMO) method applied to analysis of the ligand-protein interaction in a pheromone-binding protein. T. Nemoto, D. G. Fedorov, M. Uebayasi, K. Kanazawa, K. Kitaura, Y. Komeiji, Comp. Biol. Chem. 29 (2005) 434-439. 27. All electron quantum chemical calculation of the entire enzyme system confirms a collective catalytic device in the chorismate mutase reaction. T. Ishida, D. G. Fedorov, K. Kitaura, J. Phys. Chem. B 110 (2006) 1457-1463. 28. Dynamic polarizability calculation with fragment molecular orbital scheme. Y. Mochizuki, T. Ishikawa, K. Tanaka, H. Tokiwa, T. Nakano, S. Tanaka, Chem. Phys. Lett. 418 (2006) 418-422. 29. A fragment molecular-orbital-multicomponent molecular-orbital method for analyzing H/D isotope effects in large molecules. T. Ishimoto, M. Tachikawa, U. Nagashima, J. Chem. Phys. 124 (2006) 014112. 30. VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening. S. Amari, M. Aizawa, J. Zhang, K. Fukuzawa, Y. Mochizuki, Y. Iwasawa, K. Nakata, H. Chuman, T. Nakano, J. Chem. Inf. Comp. Sci. 46 (2006) 221-230. 31. Functions of key residues in the ligand-binding pocket of vitamin D receptor: Fragment molecular orbital-interfragment interaction energy analysis. K. Yamagishi, K. Yamamoto, S. Yamada, H. Tokiwa, Chem. Phys. Lett. 420 (2006) 465-468. 32. Intra- and intermolecular interactions between cyclic-AMP receptor protein and DNA: Ab initio fragment molecular orbital study. K. Fukuzawa, Y. Komeiji, Y. Mochizuki, A. Kato, T. Nakano, S. Tanaka, J. Comp. Chem. 27 (2006) 948-960. 33. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO). D. G. Fedorov, K. Kitaura, H. Li, J. H. Jensen, M. S. Gordon, J. Comp. Chem. 27 (2006) 976-985. 34. Fragment molecular orbital calculations on large scale systems containing heavy metal atom. T. Ishikawa, Y. Mochizuki, T. Nakano, S. Amari, H. Mori, H. Honda, T. Fujita, H. Tokiwa, S. Tanaka, Y. Komeiji, K. Fukuzawa, K. Tanaka, E. Miyoshi, Chem. Phys. Lett. 427 (2006) 159-165. 35. Theoretical development of the fragment molecular orbital (FMO) method. D. G. Fedorov, K. Kitaura, in "Modern methods for theoretical physical chemistry of biopolymers", E. B. Starikov, J. P. Lewis, S. Tanaka, Eds., pp 3-38, Elsevier, Amsterdam, 2006. 36. Developments and applications of ABINIT-MP software based on the fragment molecular orbital method. T. Nakano, Y. Mochizuki, K. Fukuzawa, S. Amari, S. Tanaka, in "Modern methods for theoretical physical chemistry of biopolymers", E. B. Starikov, J. P. Lewis, S. Tanaka, Eds., pp 39-52, Elsevier, Amsterdam, 2006. 37. Molecular interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method. K. Fukuzawa, Y. Mochizuki, S. Tanaka, K. Kitaura, T. Nakano, J. Phys. Chem. B 110 (2006) 16102-16110. 38. Examination of numerical accuracy on fragment-DFT calculations with integral values of total electron density functions. Y. Shimodo, K. Morihashi and T. Nakano, J. Mol. Str. (THEOCHEM), 770 (2006) 163-168. 39. Application of fragment molecular orbital scheme to silicon-containing systems. T. Ishikawa, Y. Mochizuki, K. Imamura, T. Nakano, H. Mori, H. Tokiwa, K. Tanaka, E. Miyoshi, S. Tanaka, Chem. Phys. Lett. 430 (2006) 361-366. 40. The extension of the fragment molecular orbital method with the many-particle Green's function. K. Yasuda, D. Yamaki, J. Chem. Phys. 125 (2006) 154101. 41. Why does avian influenza A virus hemagglutinin bind to avian receptor stronger than to human receptor? Ab initio fragment molecular orbital studies. T. Sawada, T. Hashimoto, H. Nakano, T. Suzuki, H. Ishida, M. Kiso, Biochem. Biophys. Res. Comm. 351 (2006) 40-43. 42. The three-body fragment molecular orbital method for accurate calculations of large systems. D. G. Fedorov, K. Kitaura, Chem. Phys. Lett. 433 (2006) 182-187. 43. Ab initio biomolecular calculations using quantum Monte Carlo combined with the fragment molecular orbital method. R. Maezono, H. Watanabe, S. Tanaka, in Advances in Quantum Monte Carlo, J. B. Anderson, S. M. Rothstein, Eds., ACS Symposium Series 953, pp 141-146, American Chemical Society: Washington, DC, 2006. 44. Pair interaction energy decomposition analysis. D. G. Fedorov, K. Kitaura, J. Comp. Chem. 28 (2007) 222-237. 45. Fragment molecular orbital calculations on red fluorescent protein (DsRed). Y. Mochizuki, T. Nakano, S. Amari, T. Ishikawa, K. Tanaka, M. Sakurai, S. Tanaka, Chem. Phys. Lett. 433 (2007) 360-367. 46. A fully quantum mechanical simulation study on the lowest n-pi* state of hydrated formaldehyde. Y. Mochizuki, Y. Komeiji, T. Ishikawa, T. Nakano, H. Yamataka, Chem. Phys. Lett. 437 (2007) 66-72. 47. Parallelized integral-direct CIS(D) calculations with multilayer fragment molecular orbital scheme. Y. Mochizuki, K. Tanaka, K. Yamashita, T. Ishikawa, T. Nakano, S. Amari, K. Segawa, T. Murase, H. Tokiwa, M. Sakurai, Theor. Chem. Acc. 117 (2007) 541-553. 48. Ab initio fragment molecular orbital study of molecular interactions between liganded retinoid X receptor and its coactivator: Roles of helix 12 in the coactivator binding mechanism. M. Ito, K. Fukuzawa, Y. Mochizuki, T. Nakano, S. Tanaka, J. Phys. Chem. B 111 (2007) 3525-3533. 49. Influenza viral hemagglutinin complicated shape is advantageous to its binding affinity for sialosaccharide receptor. T. Sawada, T. Hashimoto, H. Nakano, T. Suzuki, Y. Suzuki, Y. Kawaoka, H. Ishida, M. Kiso, Biochem. Biophys. Res. Comm. 355 (2007) 6-9. 50. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. D. G. Fedorov, T. Ishida, M. Uebayasi, K. Kitaura, J. Phys. Chem. A 111 (2007) 2722-2732. 51. Accuracy of the three-body fragment molecular orbital method applied to Moeller-Plesset perturbation theory. D. G. Fedorov, K. Ishimura, T. Ishida, K. Kitaura, P. Pulay, S. Nagase, J. Comp. Chem. 28 (2007) 1476-1484. 52. Molecular recognition mechanism of FK506 binding protein: An all-electron fragment molecular orbital study. I. Nakanishi, D. G. Fedorov, K. Kitaura, Proteins: Struct., Funct., Bioinf. 68 (2007) 145-158. 53. Change in a protein's electronic structure induced by an explicit solvent: An ab initio fragment molecular orbital study of ubiquitin. Y. Komeiji, T. Ishida, D. G. Fedorov, K. Kitaura, J. Comp. Chem. 28 (2007) 1750-1762. 54. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. D. G. Fedorov, K. Kitaura, J. Phys. Chem. A 111 (2007) 6904-6914. 55. DNA and estrogen receptor interaction revealed by fragment molecular orbital calculations. T. Watanabe, Y. Inadomi, K. Fukuzawa, T. Nakano, S. Tanaka, L. Nilsson, U. Nagashima, J. Phys. Chem. B. 111 (2007) 9621-9627. 56. Ab initio study of molecular interactions in higher plant and Galdieria partita Rubiscos with the fragment molecular orbital method. H. Watanabe, T. Enomoto, S. Tanaka, Biochem. Biophys. Res. Comm. 361 (2007) 367-372. 57. Time-dependent density functional theory with the multilayer fragment molecular orbital method. M. Chiba, D. G. Fedorov, K. Kitaura, Chem. Phys. Lett. 444 (2007) 346-350. 58. Ab initio NMR chemical shift calculations on proteins using fragment molecular orbitals with electrostatic environment. Q. Gao, S. Yokojima, T. Kohno, T. Ishida, D. G. Fedorov, K. Kitaura, M. Fujihira, S. Nakamura, Chem. Phys. Lett. 445 (2007) 331-339. 59. Time-dependent density functional theory based upon the fragment molecular orbital method. M. Chiba, D. G. Fedorov, K. Kitaura, J. Chem. Phys. 127 (2007) 104108. 60. Visualization analysis of inter-fragment interaction energies of CRP-cAMP-DNA complex based on the fragment molecular orbital method. I. Kurisaki, K. Fukuzawa, Y. Komeiji, Y. Mochizuki, T. Nakano, J. Imada, A. Chmielewski, S. M. Rothstein, H. Watanabe, S. Tanaka, Bioph. Chem. 130 (2007) 1-9. 61. Fragment interaction analysis based on local MP2. T. Ishikawa, Y. Mochizuki, S. Amari, T. Nakano, H. Tokiwa, S. Tanaka, K. Tanaka, Theor. Chem. Acc. 118 (2007) 937-945. 62. Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. Y. Okiyama, H. Watanabe, K. Fukuzawa, T. Nakano, Y. Mochizuki, T. Ishikawa, S. Tanaka, K. Ebina, Chem. Phys. Lett. 449 (2007) 329-335. 63. Fragmentation method combined with quantum Monte Carlo calculations. R. Maezono, H. Watanabe, S. Tanaka, M. D. Towler, R. J. Needs, J. Phys. Soc. Jap. 76 (2007) 064301. 64. Receptor-specific scoring functions derived from quantum chemical models improve affinity estimates for in-silico drug discovery. B. Fischer, K. Fukuzawa, W. Wenzel, Proteins: Struct., Funct., Bioinf. 70 (2008) 1264-1273. 65. How does an SN2 reaction take place in solution? Full ab initio MD simulations for the hydrolysis of the methyl diazonium ion. M. Sato, H. Yamataka, Y. Komeiji, Y. Mochizuki, T. Ishikawa, T. Nakano, J. Am. Chem. Soc. 130 (2008) 2396-2397. 66. Ab initio fragment molecular orbital study of molecular interactions between liganded retinoid X receptor and its coactivator; part II: Influence of mutations in transcriptional activation function 2 activating domain core on the molecular interactions. M. Ito, K. Fukuzawa, Y. Mochizuki, T. Nakano, S. Tanaka, J. Phys. Chem. A 112 (2008) 1986-1998. 67. Theoretical analysis of binding specificity of influenza viral hemagglutinin to avian and human receptors based on the fragment molecular orbital method. T. Iwata, K. Fukuzawa, K. Nakajima, S. Aida-Hyugaji, Y. Mochizuki, H. Watanabe, S. Tanaka, Comp. Biol. Chem. 32 (2008) 198-211. 68. Large scale FMO-MP2 calculations on a massively parallel-vector computer. Y. Mochizuki, K. Yamashita, T. Murase, T. Nakano, K. Fukuzawa, K. Takematsu, H. Watanabe, S. Tanaka, Chem. Phys. Lett. 457 (2008) 396-403. 69. Ab initio fragment molecular orbital study of ligand binding to human progesterone receptor ligand-binding domain. T. Harada, K. Yamagishi, T. Nakano, K. Kitaura, H. Tokiwa, Naunyn-Schmiedeberg's Arch. Pharmac. 377 (2008) 607-615. 70. QSAR Study of Cyclic Urea Type HIV-1 PR Inhibitors Using Ab Initio MO Calculation of Their Complex Structures with HIV-1. T. Yoshida, K. Yamagishi, H. Chuman, QSAR Comb. Sci. 27 (2008) 694-703. 71. Ab Initio Fragment Molecular Orbital Study of Molecular Interactions in Liganded Retinoid X Receptor: Specification of Residues Associated with Ligand Inducible Information Transmission. M. Ito, K. Fukuzawa, T. Ishikawa, Y. Mochizuki, T. Nakano, S. Tanaka, J. Phys. Chem. B. 112 (2008) 12081-12094. 72. CH/pi hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: An ab initio fragment molecular orbital study. T. Ozawa, K. Okazaki, J. Comp. Chem. 29 (2008) 2656-2666. 73. Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory. M. Chiba, D. G. Fedorov, K. Kitaura, J. Comp. Chem. 29 (2008) 2667-2676. 74. Theoretical Analysis of the Intermolecular Interaction Effects on the Excitation Energy of Organic Pigments: Solid State Quinacridone. H. Fukunaga, D. G. Fedorov, M. Chiba, K. Nii, K. Kitaura, J. Phys. Chem. A 112 (2008) 10887-10894. 75. An application of fragment interaction analysis based on local MP2. T. Ishikawa, Y. Mochizuki, S. Amari, T. Nakano, S. Tanaka, K. Tanaka, Chem. Phys. Lett. 463 (2008) 189-194. 76. Covalent Bond Fragmentation Suitable To Describe Solids in the Fragment Molecular Orbital Method. D. G. Fedorov, J. H. Jensen, R. C. Deka, K. Kitaura, J. Phys. Chem. A 112 (2008) 11808-11816. 77. The importance of CH/pi hydrogen bonds in rational drug design: An ab initio fragment molecular orbital study to leukocyte-specific protein tyrosine (LCK) kinase, T. Ozawa, E. Tsuji, M. Ozawa, C. Handa, H. Mukaiyama, T. Nishimura, S. Kobayashi, K. Okazaki, Bioorg. Med. Chem. 16 (2008) 10311-10318. 78. Ab initio fragment molecular orbital studies of influenza virus hemagglutinin-sialosaccharide complexes toward chemical clarification about the virus host range determination. T. Sawada, T. Hashimoto, H. Tokiwa, T. Suzuki, H. Nakano, H. Ishida, M. Kiso, Y. Suzuki, Glycoconj. J. 25 (2008) 805-815. 79. Fragment molecular orbital method-based molecular dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation. Y. Komeiji, T. Ishikawa, Y. Mochizuki, H. Yamataka, T. Nakano, J. Comp. Chem. 30 (2009) 40-50. 80. Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. II. Towards an improvement of force fields used for classical molecular dynamics simulations. Y. Okiyama, H. Watanabe, K. Fukuzawa, T. Nakano, Y. Mochizuki, T. Ishikawa, K. Ebina, S. Tanaka, Chem. Phys. Lett. 467 (2009) 417-423. 81. Fragment molecular orbital calculations on red fluorescent proteins (DsRed and mFruits). N. Taguchi, Y. Mochizuki, T. Nakano, S. Amari, K. Fukuzawa, T. Ishikawa, M. Sakurai, S. Tanaka, J. Phys. Chem. B 113 (2009) 1153-1161. 82. Ab initio fragment molecular orbital (FMO) analysis of the structure of the phosphoinositide-binding peptide from gelsolin. M. Tada, T. Nagasima, T. Udagawa, M. Tachikawa, H. Sugawara J. Mol. Str. (THEOCHEM) 897 (2009) 149-153. 83. Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems. Y. Komeiji, Y. Mochizuki, T. Nakano, D. G. Fedorov, J. Mol. Str. (THEOCHEM) 898 (2009) 2-7. 84. Ab initio quantum-chemical study on emission spectra of bioluminescent luciferases by fragment molecular orbital method. A. Tagami, N. Ishibashi, D. Kato, N. Taguchi, Y. Mochizuki, H. Watanabe, M. Ito, S. Tanaka, Chem. Phys. Lett. 472 (2009) 118-123. 85. Possibility of mutation prediction of influenza hemagglutinin by combination of hemadsorption experiment and quantum chemical calculation for antibody binding. K. Takematsu, K. Fukuzawa, K. Omagari, S. Nakajima, K. Nakajima, Y. Mochizuki, T. Nakano, H. Watanabe, S. Tanaka, J. Phys. Chem. B 113 (2009) 4991-4994. 86. Importance of dispersion and electron correlation in ab initio protein folding. X. He, L. Fusti-Molnar, G. Cui, K. M. Merz, Jr., J. Phys. Chem. B 113 (2009) 5290-5300. 87. Structural and interaction analysis of helical heparin oligosaccharides with the fragment molecular orbital method. T. Sawada, D. G. Fedorov, K. Kitaura, Int. J. Quant. Chem. 109 (2009) 2033-2045. 88. Fragment molecular orbital (FMO) and FMO-MO calculations of DNA: Accuracy validation of energy and interfragment interaction energy. T. Watanabe, Y. Inadomi, H. Umeda, K. Fukuzawa, S. Tanaka, T. Nakano, U. Nagashima, J. Comp. Theor. Nanosc. 6 (2009) 1328-1337. 89. Novel quantitative structure-activity studies of HIV-1 protease inhibitors of the cyclic urea type using descriptors derived from molecular dynamics and molecular orbital calculations. T. Yoshida, T. Fujita, H. Chuman, Curr. Comp.-Aided Drug Des. 5 (2009) 38-55. 90. Fragment molecular orbital calculation using the RI-MP2 method. T. Ishikawa, K. Kuwata, Chem. Phys. Lett. 474 (2009) 195-198. 91. Excited state geometry optimizations by time-dependent density functional theory based on the fragment molecular orbital method. M. Chiba, D. G. Fedorov, T. Nagata, K. Kitaura, Chem. Phys. Lett. 474 (2009) 227-232. 92. Theoretical background of the fragment molecular orbital (FMO) method and its implementation in GAMESS. D. G. Fedorov, K. Kitaura, in The Fragment Molecular Orbital Method: Practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds.; pp. 5-36, CRC Press, Boca Raton, FL, 2009. 93. Developments of FMO methodology and graphical user interface in ABINIT-MP. T. Nakano, Y. Mochizuki, A. Kato, K. Fukuzawa, T. Ishikawa, S. Amari, I. Kurisaki, S. Tanaka, in The fragment molecular orbital method: Practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds.; pp.37-62, CRC Press, Boca Raton, FL, 2009. 94. Excited states of photoactive proteins by configuration interaction studies. Y. Mochizuki, T. Nakano, N. Taguchi, S. Tanaka, in The fragment molecular orbital method: Practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds.; pp. 63-90, CRC Press, Boca Raton, FL, 2009. 95. The fragment molecular orbital - based time-dependent density functional theory for excited states in large systems. M. Chiba, D. G. Fedorov, K. Kitaura, in The fragment molecular orbital method: Practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds.; pp. 91-118, CRC Press, Boca Raton, FL, 2009. 96. FMO-MD An ab initio-based molecular dynamics of large systems. Y. Komeiji, in The fragment molecular orbital method: Practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds.; pp. 119-132. 97. Application of FMO method to specific molecular recognition of biomacromolecules, by K. Fukuzawa, Y. Mochizuki, T. Nakano, S. Tanaka, in The fragment molecular orbital method: Practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds.; pp. 133-170, CRC Press, Boca Raton, FL, 2009. 98. Detailed electronic structure studies revealing the nature of protein-ligand binding. I. Nakanishi, D. G. Fedorov, K. Kitaura, in The fragment molecular orbital method: Practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds.; pp. 171-192, CRC Press, Boca Raton, FL, 2009. 99. How does FMO method help in studying viruses and their binding to receptors? T. Sawada, T. Hashimoto, H. Tokiwa, T. Suzuki, H. Nakano, H. Ishida, M. Kiso, Y. Suzuki, in The fragment molecular orbital method: Practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds.; pp. 193-216, CRC Press, Boca Raton, FL, 2009. 100. FMO as a tool for structure-based drug design. T. Ozawa, K. Okazaki, M. Nishio, in The fragment molecular orbital method: Practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds.; pp. 217-244, CRC Press, Boca Raton, FL, 2009. 101. Modeling protein environment in an enzymatic catalysis: A case study of the chorismate mutase reaction, T. Ishida, in The fragment molecular orbital method: Practical applications to large molecular systems, D. G. Fedorov, K. Kitaura, Eds.; pp. 245-268, CRC Press, Boca Raton, FL, 2009. 102. Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method. T. Nagata, D. G. Fedorov, K. Kitaura, Chem. Phys. Lett. 475 (2009) 124-131. 103. Molecular orbital calculation of biomolecules with fragment molecular orbitals. S. Tsuneyuki, T. Kobori, K. Akagi, K. Sodeyama, K. Terakura, H. Fukuyama, Chem. Phys. Lett. 476 (2009) 104-108. 104. A combined effective fragment potential - fragment molecular orbital method. I. The energy expression and initial applications. T. Nagata, D. G. Fedorov, K. Kitaura, M. S. Gordon, J. Chem. Phys. 131 (2009) 024101. 105. Analytic gradient for the adaptive frozen orbital bond detachment in the fragment molecular orbital method. D. G. Fedorov, P. V. Avramov, J. H. Jensen, K. Kitaura, Chem. Phys. Lett. 477 (2009) 169-175. 106. Accuracy of fragmentation in ab initio calculations of hydrated sodium cation. T. Fujita, K. Fukuzawa, Y. Mochizuki, T. Nakano, S. Tanaka, Chem. Phys. Lett. 478 (2009) 295-300. 107. Ab initio molecular orbital calculations on specific interactions between urokinase-type plasminogen activator and its receptor. K. Nagase, H. Kobayashi, E. Yoshikawa, N. Kurita, J. Mol. Graph. Mod. 28 (2009) 46-53. 108. A combined simulation with ab initio MO and classical vibrational analysis on the specific interactions between thermolysin and dipeptide ligands. K. Dedachi, M. T. H. Khan, I. Sylte, N. Kurita, Chem. Phys. Lett. 479 (2009) 290-295. 109. Roles of K151 and D180 in L-2-haloacid dehalogenase from Pseudomonas sp. YL: Analysis by molecular dynamics and ab initio fragment molecular orbital calculations. T. Nakamura, A. Yamaguchi, H. Kondo, H. Watanabe, T. Kurihara, N. Esaki, S. Hirono, S. Tanaka, J. Comp. Chem. 30 (2009) 2625-2634. 110. Theoretical study of the prion protein based on the fragment molecular orbital method. T. Ishikawa, T. Ishikura, K. Kuwata, J. Comp. Chem. 30 (2009) 2594-2601. 111. Ab initio path integral molecular dynamics based on fragment molecular orbital method. T. Fujita, H. Watanabe, S. Tanaka, J. Phys. Soc. Jap. 78 (2009) 104723. 112. Solvatochromic Shifts of Uracil and Cytosine Using a Combined Multireference Configuration Interaction/Molecular Dynamics Approach and the fragment molecular orbital method. K. A. Kistler, S. Matsika, J. Phys. Chem. A 113 (2009) 12396-12403. 113. The role of the exchange in the embedding electrostatic potential for the fragment molecular orbital method. D. G. Fedorov, K. Kitaura, J. Chem. Phys. 131 (2009) 171106. 114. Fragment molecular orbital study of the electronic excitations in the photosynthetic reaction center of Blastochloris viridis. T. Ikegami, T. Ishida, D. G. Fedorov, K. Kitaura, Y. Inadomi, H. Umeda, M. Yokokawa, S. Sekiguchi, J. Comp. Chem. 31 (2010) 447-454. 115. Three-body expansion and generalized dynamic fragmentation improve the fragment molecular orbital-based molecular dynamics (FMO-MD). Y. Komeiji, Y. Mochizuki, T. Nakano, Chem. Phys. Lett. 484 (2010) 380-386. 116. Open-Shell Formulation of the fragment molecular orbital method. S. R. Pruitt, D. G. Fedorov, K. Kitaura, M. S. Gordon, J. Chem. Theory Comp. 6 (2010) 1-5. 117. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation. H. Li, D. G. Fedorov, T. Nagata, K. Kitaura, J. H. Jensen, M. S. Gordon, J. Comp. Chem. 31 (2010) 778-790. 118. Interaction Analysis of the Native Structure of Prion Protein with Quantum Chemical Calculations. T. Ishikawa, K. Kuwata, J. Chem. Theory Comp. 6 (2010) 538-547. 119. Multivariate analysis of properties of amino acid residues in proteins from a viewpoint of functional site prediction. S. Du, M. Sakurai, Chem. Phys. Lett. 488 (2010) 81-85. 120. Nuclear-Electronic Orbital Method within the Fragment Molecular Orbital Approach. B. Auer, M. V. Pak, S. Hammes-Schiffer, J. Phys. Chem. C 114 (2010) 5582-5588. 121. Molecular mechanics and all-electron fragment molecular orbital calculations on mutated polyglutamine peptides. B. M. B. Van Schouwen, M. Nakano, H. Watanabe, S. Tanaka, H. L. Gordon, S. M. Rothstein, J. Mol. Str. (THEOCHEM) 944 (2010) 12-20. 122. Fragment molecular orbital-based molecular dynamics (FMO-MD) simulations on hydrated Zn(II) ion. T. Fujiwara, Y. Mochizuki, Y. Komeiji, Y. Okiyama, H. Mori, T. Nakano, E. Miyoshi, Chem. Phys. Lett. 490 (2010) 41-45. 123. Acceleration of fragment molecular orbital calculations with Cholesky decomposition approach. Y. Okiyama, T. Nakano, K. Yamashita, Y. Mochizuki, N. Taguchi, S. Tanaka, Chem. Phys. Lett. 490 (2010) 84-89. 124. Fragment-molecular-orbital-method-based ab initio NMR chemical-shift calculations for large molecular systems. Q. Gao, S. Yokojima, D. G. Fedorov, K. Kitaura, M. Sakurai, S. Nakamura, J. Chem. Theory Comp. 6 (2010) 1428-1444. 125. Flexible ligand recognition of peroxisome proliferator-activated receptor-gamma (PPARgamma). K. Yamagishi, K. Yamamoto, Y. Mochizuki, T. Nakano, S. Yamada, H. Tokiwa, Bioorg. Med. Chem. Lett. 20 (2010) 3344-3347. 126. Correlation analyses on binding affinity of Substituted benzenesulfonamides with carbonic anhydrase using ab initio MO calculations on their Complex structures. T. Yoshida, Y. Munei, S. Hitaoka, H. Chuman, J. Chem. Inf. Model. 50 (2010) 850-860. 127. Importance of the hybrid orbital operator derivative term for the energy gradient in the fragment molecular orbital method. T. Nagata, D. G. Fedorov, K. Kitaura, Chem. Phys. Lett. 492 (2010) 302-308. 128. Does amination of formaldehyde proceed through a zwitterionic intermediate in water? Fragment molecular orbital molecular dynamics simulations by using constraint dynamics. M. Sato, H. Yamataka, Y. Komeiji, Y. Mochizuki, T. Nakano, Chem. Eur. J. 16 (2010) 6430-6433. 129. Large-scale FMO-MP3 calculations on the surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA). Y. Mochizuki, K. Yamashita, K. Fukuzawa, K. Takematsu, H. Watanabe, N. Taguchi, Y. Okiyama, M. Tsuboi, T. Nakano, S. Tanaka, Chem. Phys. Lett. 493 (2010) 346-352. 130. Ligand-dependent conformation change reflects steric structure and interactions of a vitamin D receptor/ligand complex: a fragment molecular orbital study. S. Motoyoshi, K. Yamagishi, S. Yamada, H. Tokiwa, J. Ster. Biochem. Mol. Biol. 121 (2010) 56-59. 131. Interactions between 1alpha,25(OH)2D3 and residues in the ligand-binding pocket of the vitamin D receptor: a correlated fragment molecular orbital study. K. Yamagishi, H. Tokiwa, M. Makishima, S. Yamada, J. Ster. Biochem. Mol. Biol. 121 (2010) 63-67. 132. Systematic Study of the Embedding Potential Description in the Fragment Molecular Orbital Method. D. G. Fedorov, L. V. Slipchenko, K. Kitaura, J. Phys. Chem. A 114 (2010) 8742-8753. 133. Parallel Fock matrix construction with distributed shared memory model for the FMO-MO method. H. Umeda, Y. Inadomi, T. Watanabe, T. Yagi, T. Ishimoto, T. Ikegami, H. Tadano, T. Sakurai, U. Nagashima, J. Comp. Chem. 31 (2010) 2381-2388. 134. Electronic excitation energy calculation by the fragment molecular orbital method with three-body effects. M. Chiba, T. Koido, J. Chem. Phys. 133 (2010) 044113. 135. Specific interactions between aryl hydrocarbon receptor and dioxin congeners: Ab initio fragment molecular orbital calculations. E. Yoshikawa, S. Miyagi, K. Dedachi, M. Ishihara-Sugano, S. Itoh, N. Kurita, J. Mol. Graph. Mod. 29 (2010) 197-205. 136. The role of fluorine atoms in a fluorinated prostaglandin agonist. K. Fujimura, Y. Sasabuchi, Chem. Med. Chem. 5 (2010) 1254-1257. 137. Incorporation of solvation effects into the fragment molecular orbital calculations with the Poisson-Boltzmann equation. H. Watanabe, Y. Okiyama, T. Nakano, S. Tanaka, Chem. Phys. Lett. 500 (2010) 116-119. 138. Partial energy gradient based on the fragment molecular orbital method: Application to geometry optimization. T. Ishikawa, N. Yamamoto, K. Kuwata, Chem. Phys. Lett. 500 (2010) 149-154. 139. Fragment molecular orbital investigation of the role of AMP protonation in firefly luciferase pH-sensitivity. B. F. Milne, M. A. L. Marques, F. Nogueira, Phys. Chem. Chem. Phys. 12 (2010) 14285-14293. 140. Correlation analyses on binding affinity of sialic acid analogues with influenza virus neuraminidase-1 using ab initio MO calculations on their complex structures. S. Hitaoka, M. Harada, T. Yoshida, H. Chuman, J. Chem. Inf. Model. 50 (2010) 1796-1805. 141. Role of the key mutation in the selective binding of avian and human influenza hemagglutinin to sialosides revealed by quantum-mechanical calculations. T. Sawada, D. G. Fedorov, K. Kitaura, J. Am. Chem. Soc. 132 (2010) 16862-16872. 142. Binding of influenza A virus hemagglutinin to the sialoside receptor is not controlled by the homotropic allosteric effect. T. Sawada, D. G. Fedorov, K. Kitaura, J. Phys. Chem. B 114 (2010) 15700-15705. 143. Fragment molecular orbital (FMO) study on stabilization mechanism of neuro-oncological ventral antigen (NOVA)-RNA complex system. I. Kurisaki, K. Fukuzawa, T. Nakano, Y. Mochizuki, H. Watanabe, S. Tanaka, J. Mol. Str. (THEOCHEM) 962 (2010) 45-55. 144. Hasegawa, K.; Mohri, S.; Yokoyama, T. Fragment molecular orbital calculations reveal that the E200K mutation markedly alters local structural stability in the human prion protein. Prion 4 (2010) 38-44. 145. Correlation analyses on binding affinity of substituted benzenesulfonamides with carbonic anhydrase using ab initio MO calculations on their complex structures (II). Y. Munei, K. Shimamoto, M. Harada, T. Yoshida, H. Chuman, Bioorg. Med. Chem. Lett. 21 (2011) 141-144. 146. Computational Insights into Binding of Bisphosphates to Farnesyl Pyrophosphate Synthase. K. Ohno, K. Mori, M. Orita, M. Takeuchi, Curr. Med. Chem. 18 (2011) 220-233. 147. A combined effective fragment potential - fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin. T. Nagata, D. G. Fedorov, T. Sawada, K. Kitaura, M. S. Gordon, J. Chem. Phys. 134 (2011) 034110. 148. Geometry optimization of the active site of a large system with the fragment molecular orbital method. D. G. Fedorov, Y. Alexeev, K. Kitaura, J. Phys. Chem. Lett. 2 (2011) 282-288. 149. Fragment molecular orbital calculations for excitation energies of blue- and yellow-fluorescent proteins. N. Taguchi, Y. Mochizuki, T. Nakano, Chem. Phys. Lett. 504 (2011) 76-82. 150. Fragment molecular orbital-based molecular dynamics (FMO-MD) method with MP2 gradient. Y. Mochizuki, T. Nakano, Y. Komeiji, K. Yamashita, Y. Okiyama, H. Yoshikawa, H. Yamataka, Chem. Phys. Lett. 504 (2011) 95-99. 151. Fully analytic energy gradient in the fragment molecular orbital method. T. Nagata, K. Brorsen, D. G. Fedorov, K. Kitaura, M. S. Gordon, J. Chem. Phys. 134 (2011) 124115. 152. Mathematical Formulation of the fragment molecular orbital method. T. Nagata, D. G. Fedorov, K. Kitaura. In Linear-Scaling Techniques in Computational Chemistry and Physics. R. Zalesny, M. G. Papadopoulos, P. G. Mezey, J. Leszczynski (Eds.), Springer, New York, 2011, pp. 17-64. 153. Specific interactions between lactose repressor protein and DNA affected by ligand binding: Ab initio molecular orbital calculations. T. Ohyama, M. Hayakawa, S. Nishikawa, N. Kurita, J. Comp. Chem. 32 (2011) 1661-1670. 154. Fragment molecular orbital calculations under periodic boundary condition. T. Fujita, T. Nakano, S. Tanaka, Chem. Phys. Lett. 506 (2011) 112-116. 155. A theoretical study of the Physicochemical Mechanisms Associated with DNA Recognition Modulation in Artificial Zinc-Finger Proteins. H. Mori, K. Ueno-Noto, J. Phys. Chem. B 115 (2011) 4774-4780. 156. The effects of amino-acid mutations on specific interactions between urokinase-type plasminogen activator and its receptor: Ab initio molecular orbital calculations. S. Tsuji, T. Kasumi, K. Nagase, E. Yoshikawa, H. Kobayashi, N. Kurita, J. Mol. Graph. Mod. 29 (2011) 975-984. 157. Counterpoise-corrected interaction energy analysis based on the fragment molecular orbital scheme. Y. Okiyama, K. Fukuzawa, H. Yamada, Y. Mochizuki, T. Nakano, S. Tanaka, Chem. Phys. Lett. 509 (2011) 67-71. 158. Sialic Acid Recognition of the Pandemic Influenza 2009 H1N1 Virus: Binding Mechanism Between Human Receptor and Influenza Hemagglutinin. K. Fukuzawa, K. Omagari, K. Nakajima, E. Nobusawa, S. Tanaka, Prot. Pept. Lett. 18 (2011) 530-539. 159. The role of intermolecular hydrogen bond on dielectric properties in hydrogen-bonded material 5-bromo-9-hydroxyphenalenone: theoretical investigation. H. Otaki, K. Ando, Phys. Chem. Chem. Phys. 13 (2011) 10719-10728. 160. Electronic coupling calculation and pathway analysis of electron transfer reaction using ab initio fragment-based method. I. FMO-LCMO approach. H. Nishioka, K. Ando, J. Chem. Phys. 134 (2011) 204109. 161. Analytic energy gradient for second-order Moeller-Plesset perturbation theory based on the fragment molecular orbital method. T. Nagata, D. G. Fedorov, K. Ishimura, K. Kitaura, J. Chem. Phys. 135 (2011) 044110. 162. Importance of CH/pi Hydrogen Bonds in Recognition of the Core Motif in Proline-Recognition Domains: An Ab Initio Fragment Molecular Orbital Study. T. Ozawa, K. Okazaki, K. Kitaura, J. Comp. Chem. 32 (2011) 2774-2782. 163. CH/pi hydrogen bonds play a role in ligand recognition and equilibrium between active and inactive states of the b2 adrenergic receptor: An ab initio fragment molecular orbital (FMO) study. T. Ozawa, K. Okazaki, K. Kitaura. Bioorg. Med. Chem. 19 (2011) 5231-5237. 164. Prediction of probable mutations in influenza virus hemagglutinin protein based on large-scale ab initio fragment molecular orbital calculations. A. Yoshioka, K. Fukuzawa, Y. Mochizuki, K. Yamashita, T. Nakano, Y. Okiyama, E. Nobusawa, K. Nakajima, S. Tanaka, J. Mol. Graph. Mod. 30 (2011) 110-119. 165. Correlation Analyses on Binding Affinity of Sialic Acid Analogues and Anti-Influenza Drugs with Human Neuraminidase Using ab Initio MO Calculations on Their Complex Structures ? LERE-QSAR Analysis (IV). S. Hitaoka, H. Matoba, M. Harada, T. Yoshida, D. Tsuji, T. Hirokawa, K. Itoh, H. Chuman, J. Chem. Inf. Model. 51 (2011) 2706-2716. 166. Evolution of amide stacking in larger gamma-peptides: triamide H-bonded cycles. W. H. James III, E. G. Buchanan, C. W. Mueller, J. C. Dean, D. Kosenkov, L. V. Slipchenko, L. Guo, A. G. Reidenbach, S. H. Gellman, T. S. Zwier, J. Phys. Chem. A 115 (2011) 13783-13798. 167. Application of resolution of identity approximation of second-order Moeller-Plesset perturbation theory to three-body fragment molecular orbital method. M. Katouda, Theor. Chem. Acc. 130 (2011) 449-453. 168. Higher-order correlated calculations based on fragment molecular orbital scheme. Y. Mochizuki, K. Yamashita, T. Nakano, Y. Okiyama, K. Fukuzawa, N. Taguchi, S. Tanaka, Theor. Chem. Acc. 130 (2011) 515-530. 169. Antigen-antibody interactions of influenza virus hemagglutinin revealed by the fragment molecular orbital calculation. A. Yoshioka, K. Takematsu, I. Kurisaki, K. Fukuzawa, Y. Mochizuki, T. Nakano, E. Nobusawa, K. Nakajima, S. Tanaka, Theor. Chem. Acc. 130 (2011) 1197-1202. 170. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. M. P. Mazanetz, O. Ichihara, R. J. Law, M. Whittaker, J. Cheminf. 3 (2011) 2. 171. Large-scale MP2 calculations on the blue gene architecture using the fragment molecular orbital method. G. D. Fletcher, D. G. Fedorov, S. R. Pruitt, T. L. Windus, M. S. Gordon, J. Chem. Theory Comp. 8 (2012) 75-79. 172. Specific interactions and binding energies between thermolysin and potent inhibitors: Molecular simulations based on ab initio molecular orbital method. T. Hirakawa, S. Fujita, T. Ohyama, K. Dedachi, M. T. H. Khan, I. Sylte, N. Kurita, J. Mol. Graph. Mod. 33 (2012) 1-11 173. Development of the four-body corrected fragment molecular orbital (FMO4) method. T. Nakano, Y. Mochizuki, K. Yamashita, C. Watanabe, K. Fukuzawa, K. Segawa, Y. Okiyama, T. Tsukamoto, S. Tanaka, Chem. Phys. Lett. 523 (2012) 128-133. 174. Large-scale ab initio calculations of archetypical ionic liquids. E. I. Izgorodina, J. Rigby, D. R. MacFarlane, Chem. Commun. 48 (2012) 1493-1495. 175. Energy decomposition analysis in solution based on the fragment molecular orbital method. D. G. Fedorov, K. Kitaura, J. Phys. Chem. A 116 (2012) 704-719. 176. RI-MP2 gradient calculation of large molecules using the fragment molecular orbital method. T. Ishikawa, K. Kuwata, J. Phys. Chem. Lett. 3 (2012) 375-379. 177. Analytic gradient and molecular dynamics simulations using the fragment molecular orbital method combined with effective potentials. T. Nagata, D. G. Fedorov, K. Kitaura, Theor. Chem. Acc. 131 (2012) 1136. 178. Differences in hydration between cis- and trans-platin: Quantum insights by ab initio fragment molecular orbital-based molecular dynamics (FMO-MD). H. Mori, N. Hirayama, Y. Komeiji, Y. Mochizuki, Comp. Theor. Chem. 986 (2012) 30-34. 179. Partial geometry optimization with FMO-MP2 gradient: Application to TrpCage. T. Tsukamoto, Y. Mochizuki, N. Watanabe, K. Fukuzawa, T. Nakano, Chem. Phys. Lett. 535 (2012) 157-162. 180. Exploring chemistry with the fragment molecular orbital method. D. G. Fedorov, T. Nagata, K. Kitaura, Phys. Chem. Chem. Phys. 14 (2012) 7562-7577. 181. The fragment molecular orbital and systematic molecular fragmentation methods applied to water clusters. S. R. Pruitt, M. A. Addicoat, M. A. Collins, M. S. Gordon, Phys. Chem. Chem. Phys. 14 (2012) 7752-7764. 182. Analytic gradient for second order Moeller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method. T. Nagata, D. G. Fedorov, H. Li, K. Kitaura, J. Chem. Phys. 136 (2012) 204112. 183. Geometry optimizations of open-shell systems with the fragment molecular orbital method. S. R. Pruitt, D. G. Fedorov, M. S. Gordon, J. Phys. Chem. A 116 (2012) 4965-4974. 184. Origin of the inhibitory activity of 4-O-substituted sialic derivatives of human parainfluenza virus. Y. Itoh, A. Sando, K. Ikeda, T. Suzuki, H. Tokiwa, Glycoconj. J. 29 (2012) 231-237. 185. FMO-MD Simulations on the hydration of formaldehyde in water solution with constraint dynamics. M. Sato, H. Yamataka, Y. Komeiji, Y. Mochizuki, Chem. Eur. J. 18 (2012) 9714-9721. 186. Intrinsic edge asymmetry in narrow zigzag hexagonal heteroatomic nanoribbons causes their subtle uniform curvature. P. V. Avramov, D. G. Fedorov, P. B. Sorokin, S. Sakai, S. Entani, M. Ohtomo, Y. Matsumoto, H. Naramoto, J. Phys. Chem. Lett. 3 (2012) 2003-2008. 187. Unrestricted Hartree-Fock based on the fragment molecular orbital method: energy and its analytic gradient. H. Nakata, D. G. Fedorov, T. Nagata, S. Yokojima, K. Ogata, K. Kitaura, S. Nakamura, J. Chem. Phys. 137 (2012) 044110. 188. Reducing the scaling of the fragment molecular orbital method using the multipole method. C. H. Choi, D. G. Fedorov, Chem. Phys. Lett. 543 (2012) 159-165. 189. Analytic gradient for the embedding potential with approximations in the fragment molecular orbital method. T. Nagata, D. G. Fedorov, K. Kitaura, Chem. Phys. Lett. 544 (2012) 87-93. 190. Analysis of solute-solvent interactions in the fragment molecular orbital method interfaced with effective fragment potentials: theory and application to a solvated griffithsin-carbohydrate complex. T. Nagata, D. G. Fedorov, T. Sawada, K. Kitaura, J. Phys. Chem. A 116 (2012) 9088-9099. 191. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides. K. Nomura, A. Okamoto, A. Yano, S. Higai, T. Kondo, S. Kamba, N. Kurita, Chem. Phys. Lett. 547 (2012) 89-96. 192. Fragment molecular orbital study on electron tunneling mechanisms in bacterial photosynthetic reaction center. H. Kitoh-Nishioka, K. Ando, J. Phys. Chem. B 116 (2012) 12933-12945. 193. The fragment molecular orbital method and understanding monomer polarization. C. D. M. Churchill, Chem. Phys. Lett. 554 (2012) 185-189. 194. Heuristic static load-balancing algorithm applied to the fragment molecular orbital method. Y. Alexeev, A. Mahajan, S. Leyffer, G. Fletcher, D. G. Fedorov Proc. Supercomputing 2012, IEEE Computer Society, Salt Lake City, 2012. 195. Ab Initio Path Integral Molecular Dynamics and Monte Carlo Simulations for Water Trimer and Oligopeptide. T. Fujita, M.-A. Kusa, T. Fujiwara, Y. Mochizuki, S. Tanaka, In Advances in Quantum Monte Carlo, Ch. 15, 2012, ACS Symposium Series, Vol. 1094, pp. 187-199. 196. Recent advances in fragment molecular orbital-based molecular dynamics (FMO-MD) simulations, Y. Komeiji, Y. Mochizuki, T. Nakano, H. Mori, In Molecular Dynamics - Theoretical Developments and Applications in Nanotechnology and Energy, L. Wang (Ed.), Intech, 2012, pp. 3-24. 197. Fragment molecular orbital molecular dynamics with the fully analytic energy gradient. K. R. Brorsen, N. Minezawa, F. Xu, T. L. Windus, M. S. Gordon, J. Chem. Theory Comp. 8 (2012) 5008-5012. 198. GAMESS as a free quantum-mechanical platform for drug research. Y. Alexeev, M. P. Mazanetz, O. Ichihara, D. G. Fedorov, Curr. Top. Med. Chem. 12 (2012) 2013-2033. 199. Towards quantum-based modeling of enzymatic reaction pathways: application to the acetylholinesterase catalysis. I. V. Polyakov, B. L. Grigorenko, A. A. Moskovsky, V. M. Pentkovski, A. V. Nemukhin, Chem. Phys. Lett. 556 (2013) 251-255. 200. Statistical correction to effective interactions in the fragment molecular orbital method. S. Tanaka, C. Watanabe, Y. Okiyama, Chem. Phys. Lett. 556 (2013) 272-277. 201. A theoretical study of the two binding modes between lysozyme and tri-NAG with an explicit solvent model based on the fragment molecular orbital method. T. Ishikawa, R. R. Burri, Y. O. Kamatari, S. Sakuraba, N. Matubayasi, A. Kitao, K. Kuwata, Phys. Chem. Chem. Phys. 15 (2013) 3646-3654. 202. Open-shell pair interaction energy decomposition analysis (PIEDA): Formulation and application to the hydrogen abstraction in tripeptides. M. C. Green, D. G. Fedorov, K. Kitaura, J. S. Francisco, L. V. Slipchenko, J. Chem. Phys. 138 (2013) 074111. 203. A minimal implementation of the AMBER-PAICS interface for ab initio FMO-QM/MM-MD simulation. T. Okamoto, T. Ishikawa, Y. Koyano, N. Yamamoto, K. Kuwata, M. Nagaoka, Bull. Chem. Soc. Jap. 86 (2013) 210-222. 204. Comparison of the local structural stabilities of mammalian prion protein (PrP) by fragment molecular orbital calculations. K. Hasegawa, S. Mohri, T. Yokoyama, Prion. 7 (2013) 185-191. 205. Three- and four-body corrected fragment molecular orbital calculations with a novel subdividing fragmentation method applicable to structure-based drug design. C. Watanabe, K. Fukuzawa, Y. Okiyama, T. Tsukamoto, A. Kato, S. Tanaka, Y. Mochizuki, T. Nakano, J. Mol. Graph. Modell. 41 (2013) 31-42. 206. Modeling of peptide-silica interaction based on four-body corrected fragment molecular orbital (FMO4) calculations. Y. Okiyama, T. Tsukamoto, C. Watanabe, K. Fukuzawa, S. Tanaka, Y. Mochizuki, Chem. Phys. Lett. 566 (2013) 25-31. 207. Protein-specific force field derived from the fragment molecular orbital method can improve protein-ligand binding interactions. L. Chang, T. Ishikawa, K. Kuwata, S. Takada, J. Comp. Chem. 34 (2013) 1251-1257. 208. Analytic second derivatives of the energy in the fragment molecular orbital method. H. Nakata, T. Nagata, D. G. Fedorov, S. Yokojima, K. Kitaura, S. Nakamura, J. Chem. Phys. 138 (2013) 164103. 209. Stable conformation of full-length amyloid-beta (1-42) monomer in water: replica exchange molecular dynamics and ab initio molecular orbital simulations. A. Okamoto, A. Yano, K. Nomura, S. Higai, N. Kurita, Chem. Phys. Lett. 577 (2013) 131-137. 210. Diffusion energy profiles in silica mesoporous molecular sieves modelled with the fragment molecular orbital method. L. Roskop, D. G. Fedorov, M. S. Gordon, Mol. Phys. 111 (2013) 1622-1629. 211. The effects of vitronectin on specific interactions between urokinase-type plasminogen activator and its receptor: ab initio molecular orbital calculations. T. Kasumi, K. Araki, T. Ohyama, S. Tsuji, E. Yoshikawa, H. Kobayashi, N. Kurita, Mol. Sim. 39 (2013) 769-779. 212. Trimer effects in fragment molecular orbital-linear combination of molecular orbitals calculation of one-electron orbitals for biomolecules. T. Kobori, K. Sodeyama, T. Otsuka, Y. Tateyama, S. Tsuneyuki, J. Chem. Phys. 139 (2013) 094113. 213. Multi-state approach to chemical reactivity in fragment based quantum chemistry calculations. A. W. Lange, G. A. Voth, J. Chem. Theory Comp. 9 (2013) 4018-4025. 214. Ab Initio Study of Molecular Interactions in Cellulose Ialpha. A. Devarajan, S. Markutsya, M. H. Lamm, X. Cheng, J. C. Smith, J. Y. Baluyut, Y. Kholod, M. S. Gordon, T. L. Windus, J. Phys. Chem. B 117 (2013) 10430-10443. 215. Crystal structure of a complex of human chymase with its benzimidazole derived inhibitor. Y. Matsumoto, S. Kakuda, M. Koizumi, T. Mizuno, Y. Muroga, T. Kawamura, M. Takimoto-Kamimura, J. Synchr. Rad. 20 (2013) 914-918. 216. Chemical description of the interaction between glycan ligand and Siglec-7 using ab initio FMO method and classical MD simulation. A. Ueno-Noto, S. Ise, K. Takano, J. Theor. Comp. Chem. 12 (2013) 1350060. 217. Octahedral point-charge model and its application to fragment molecular orbital calculations of chemical shifts. Q. Gao, S. Yokojima, D. G. Fedorov, K. Kitaura, M. Sakurai, S. Nakamura, Chem. Phys. Lett. 593 (2014) 165-173. 218. Accuracy of the fragment molecular orbital (FMO) calculations for DNA: Total energy, molecular orbital, and inter-fragment interaction energy. K. Fukuzawa, C. Watanabe, I. Kurisaki, N. Taguchi, Y. Mochizuki, T. Nakano, S. Tanaka, Y. Komeiji, Comp. Theor. Chem. 1034 (2014) 7-16. 219. Difference in dimer conformation between amyloid-beta(1-42) and (1-3) proteins: Replica exchange molecular dynamics simulations in water. A. Yano, A. Okamoto, K. Nomura, S, Higai, N. Kurita, Chem. Phys. Lett. 595-596 (2014) 242-249. 220. Affinity of HIV-1 antibody 2G12 with monosaccharides: A theoretical study based on explicit and implicit water models. Y. Koyama, K. Ueno-Noto, K. Takano, Comp. Biol. Chem. 49 (2014) 36-44. 221. Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method. D. G. Fedorov, K. Kitaura, Chem. Phys. Lett. 597 (2014) 99-105. 222. Molecular interactions of the quinone electron acceptors QA, QB, and QC in photosystem II as studied by the fragment molecular orbital method. K. Hasegawa, T. Noguchi, Photosynth. Res. 120 (2014) 113-123. 223. Derivatives of the approximated electrostatic potentials in unrestricted Hartree-Fock based on the fragment molecular orbital method and an application to polymer radicals. H. Nakata, D. G. Fedorov, S. Yokojima, K. Kitaura, S. Nakamura, Theor. Chem. Acc. 133 (2014) 1477. 224. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems. H. Nakata, D. G. Fedorov, S. Yokojima, K. Kitaura, M. Sakurai, S. Nakamura, J. Chem. Phys. 140 (2014) 144101. 225. Effect of D23N mutation on the dimer conformation of amyloid beta-proteins: Ab initio molecular simulations in water. A. Okamoto, A. Yano, K. Nomura, S. Higai, N. Kurita, J. Mol. Graph. Model. 50 (2014) 113-124. 226. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. S. Tanaka, Y. Mochizuki, Y. Komeiji, Y. Okiyama, K. Fukuzawa, Phys. Chem. Chem. Phys. 16 (2014) 10310-10344. 227. Efficient vibrational analysis for unrestricted Hartree-Fock based on the fragment molecular orbital method. H. Nakata, D. G. Fedorov, S. Yokojima, K. Kitaura, S. Nakamura, Chem. Phys. Lett. 603 (2014) 67-74. 228. Charge clamps of lysines and hydrogen bonds play key roles in the mechanism to fix helix 12 in the agonist and antagonist positions of estrogen receptor alpha: intramolecular interactions studied by the ab initio fragment molecular orbital method. C. Watanabe, K. Fukuzawa, S. Tanaka, S. Aida-Hyugaji, J. Phys. Chem. B 118 (2014) 4993-5008. 229. Efficient implementation of the three-dimensional reference interaction site model method in the fragment molecular orbital method. N. Yoshida, J. Chem. Phys. 140 (2014) 214118. 230. Interaction energy analysis on specific binding of influenza virus hemagglutinin to avian and human sialosaccharide receptors: Importance of mutation-induced structural change. S. Anzaki, C. Watanabe, K. Fukuzawa, Y. Mochizuki, S. Tanaka, J. Mol. Graph. Model. 53 (2014) 48-58. 231. Effective ion mobility calculations for macromolecules by scattering on electron clouds. Y. Alexeev, D. G. Fedorov, A. A. Shvartsburg, J. Phys. Chem. A 118 (2014) 6763-6772. 232. Simulations of Raman spectra using the fragment molecular orbital method. H. Nakata, D. G. Fedorov, S. Yokojima, K. Kitaura, S. Nakamura, J. Chem. Theory Comput. 10 (2014) 3689-3698. 233. In silico prediction of mutant HIV-1 proteases cleaving a target sequence. J. H. Jensen, M. Willemoes, J. R. Winther, L. De Vico, PLoS ONE 9 (2014) e95833. 234. The use of many-body expansions and geometry optimizations in fragment-based methods. D. G. Fedorov, N. Asada, I. Nakanishi, K. Kitaura, Acc. Chem. Res. 47 (2014) 2846-2856. 235. Efficient molecular dynamics simulations of multiple radical center systems based on the fragment molecular orbital method. H. Nakata, M. W. Schmidt, D. G. Fedorov, K. Kitaura, S. Nakamura, M. S. Gordon, J. Phys. Chem. A 118 (2014) 9762-9771. 236. Theoretical study on the hydration structure of divalent radium ion using fragment molecular orbital - molecular dynamics (FMO-MD) simulation. A. Matsuda, H. Mori, J. Sol. Chem. 43 (2014) 1669-1675. 237. Ab initio molecular simulations for proposing potent inhibitors to butyrylcholinesterases. T. Murakawa, Y. Matsushita, T. Suzuki, M. T. H. Khan, N. Kurita, J. Mol. Graph. Modell. 54 (2014) 54-61. 238. Density-functional tight-binding combined with the fragment molecular orbital method. Y. Nishimoto, D. G. Fedorov, S. Irle, J. Chem. Theory Comput. 10 (2014) 4801-4812. 239. Novel approach for identifying key residues in enzymatic reactions: proton abstraction in ketosteroid isomerase. M. Ito, T. Brinck, J. Phys. Chem. B 118 (2014) 13050-13058. 240. Analytic gradient for density functional theory based on the fragment molecular orbital method. K. R. Brorsen, F. Zahariev, H. Nakata, D. G. Fedorov, M. S. Gordon, J. Chem. Theory Comput. 10 (2014) 5297-5307. 241. Explicit solvation modulates intra- and inter-molecular interactions within DNA: Electronic aspects revealed by the ab initio fragment molecular orbital (FMO) method. K. Fukuzawa, I. Kurisaki, C. Watanabe, Y. Okiyama, Y. Mochizuki, S. Tanaka, Y. Komeiji, Comp. Theor. Chem. 1054 (2015) 29-37. 242. Charge-transfer matrix elements by FMO-LCMO approach: Hole transfer in DNA with parameter tuned range-separated DFT. H. Kitoh-Nishioka, K. Ando, Chem. Phys. Lett. 621 (2015) 96-101. 243. Quality assessment of predicted protein models using energies calculated by the fragment molecular orbital method. D. Simoncini, H. Nakata, K. Ogata, S. Nakamura, K. Y. J. Zhang, Mol. Inf. 34 (2015) 97-104. 244. Thermodynamics of binding of di- and tetrasubstituted naphthalene diimide ligands to DNA G-quadruplex. G. Prato, S. Silvent, S. Saka, M. Lamberto, D. Kosenkov, J. Phys. Chem. B 119 (2015) 3335-3347. 245. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method. H. Nakata, D. G. Fedorov, F. Zahariev, M. W. Schmidt, K. Kitaura, M. S. Gordon, S. Nakamura, J. Chem. Phys. 142 (2015) 124101. 246. Hydration effects on enzyme-substrate complex of nylon oligomer hydrolase: inter-fragment interaction energy study by the fragment molecular orbital method. H. Ando, Y. Shigeta, T. Baba, C. Watanabe, Y. Okiyama, Y. Mochizuki, M. Nakano, Mol. Phys. 113 (2015) 319-326. 247. Massively parallel electron correlation calculations for large systems. A. D. Findlater, F. Zahariev, M. S. Gordon, J. Phys. Chem. A 119 (2015) 3587-3593. 248. Binding affinity between AhR and exogenous/endogenous ligands: molecular simulations and biological experiment. S. Miyagi, K. Murata, K. Sashino, S. Sawamura, S. Uruno, S. Yoshimura, E. Akahoshi, M. Ishihara-Sugano, S. Itoh, N. Kurita, Mol. Sim. 41 (2015) 555-563. 249. Modeling of hydroxyapatite-peptide interaction based on fragment m molecular orbital method. K. Kato, K. Fukuzawa, Y. Mochizuki, Chem. Phys. Lett. 629 (2015) 58-64. 250. Novel type of virtual ligand screening on the basis of quantum-chemical calculations for protein-ligand complexes and extended clustering techniques. R. Kurauchi, C. Watanabe, K. Fukuzawa, S. Tanaka, Comp. Theor. Chem. 1061 (2015) 12-22. 251. Pharmacophore modeling for anti-chagas drug design using the fragment molecular orbital method. R. Yoshino, N. Yasuo, D. K. Inaoka, Y. Hagiwara, K. Ohno, M. Orita, M. Inoue, T. Shiba, S. Harada, T. Honma, E. O. Balogun, J. R. Rocha, C. A. Montanari, K. Kita, M. Sekijima, PLoS ONE 10 (2015) e0125829. 252. Extension of the fragment molecular orbital method to treat large open-shell systems in solution. H. Nakata, D. G. Fedorov, K. Kitaura, S. Nakamura, Chem. Phys. Lett. 635 (2015) 86-92. 253. Simulations of chemical reactions with the frozen domain formulation of the fragment molecular orbital method. H. Nakata, D. G. Fedorov, T. Nagata, K. Kitaura, S. Nakamura, J. Chem. Theory Comput. 11 (2015) 3053-3064. 254. Third-order density-functional tight-binding combined with the fragment molecular orbital method. Y. Nishimoto, D. G. Fedorov, S. Irle, Chem. Phys. Lett. 636 (2015) 90-96. 255. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method. T. Otsuka, N. Okimoto, M. Taiji, J. Comput. Chem. 36 (2015) 2209-2218. 256. Large-scale quantum-mechanical molecular dynamics simulations using density-functional tight-binding combined with the fragment molecular orbital method. Y. Nishimoto, H. Nakata, D. G. Fedorov, S. Irle, J. Phys. Chem. Lett. 6 (2015) 5034-5039. 257. Electron transfer pathway analysis in bacterial photosynthetic reaction center. H. Kitoh-Nishioka, K. Ando, in "Chemical Science of pi-Electron Systems", T. Akasaka, A. Osuka, S. Fukuzumi, H. Kandori, Y. Aso (Eds), Springer, Tokyo, pp 657-673, 2015. 258. Change in specific interactions between lactose repressor protein and DNA induced by ligand binding: molecular dynamics and molecular orbital calculations. Y. Matsushita, T. Murakawa, K. Shimamura, T. Ohyama, M. Oishi, N. Kurita, Mol. Sim. 42 (2016) 242-256. 259. The fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions. A. Heifetz, E. I. Chudyk, L. Gleave, M. Aldeghi, V. Cherezov, D. G. Fedorov, P. C. Biggin, M. J. Bodkin, J. Chem. Inf. Model. 56 (2016) 159-172. 260. Radical damage in lipids investigated with the fragment molecular orbital method. M. C. Green, H. Nakata, D. G. Fedorov, L. V. Slipchenko, Chem. Phys. Lett. 651 (2016) 56-61. 261. Using the fragment molecular orbital method to investigate agonist-orexin-2 receptor interactions. A. Heifetz, M. Aldeghi, E. I. Chudyk, D. G. Fedorov, M. J. Bodkin, P. C. Biggin, Biochem. Soc. Trans. 44 (2016) 574-581. 262. Importance of three-body interactions in molecular dynamics simulations of water demonstrated with the fragment molecular orbital method. S. R. Pruitt, H. Nakata, T. Nagata, M. Mayes, Y. Alexeev, G. Fletcher, D. G. Fedorov, K. Kitaura, M. S. Gordon, J. Chem. Theory Comput. 12 (2016) 1423-1435. 263. Interaction analysis of FABP4 inhibitors by X-ray crystallography and fragment molecular orbital analysis. U. Tagami, K. Takahashi, S. Igarashi, C. Ejima, T. Yoshida, S. Takeshita, W. Miyanaga, M. Sugiki, M. Tokumasu, T. Hatanaka, T. Kashiwagi, K. Ishikawa, H. Miyano, T. Mizukoshi, ACS Med. Chem. Lett. 7 (2016) 435-439. 264. Subsystem analysis for the fragment molecular orbital method and its application to protein-ligand binding in solution. D. G. Fedorov, K. Kitaura, J. Phys. Chem. A 120 (2016) 2218-2231. 265. Fragment molecular orbital method applied to lead optimization of novel interleukin-2 inducible T-cell kinase (ITK) inhibitors. A. Heifetz, G. Trani, M. Aldeghi, C. H. MacKinnon, P. A. McEwan, F. A. Brookfield, E. I. Chudyk, M. Bodkin, Z. Pei, J. D. Burch, D. F. Ortwine, J. Med. Chem. 59 (2016) 4352-4363. 266. Applications of the fragment molecular orbital method to drug research. M. P. Mazanetz, E. Chudyk, D. G. Fedorov, Y. Alexeev, In Computer aided drug discovery. W. Zhang, Ed., Springer, New York, 2016, pp. 217-255. 267. Fragment molecular orbital study of the cAMP-dependent protein kinase catalyzed phosphoryl transfer: a comparison with the differential transition state stabilization method. H. Öbe , T. Brinck, Phys. Chem. Chem. Phys. 18 (2016) 15153-15161. 268. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method. H. Nakata, Y. Nishimoto, D. G. Fedorov, J. Chem. Phys. 145 (2016) 044113. 269. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model. Y. Nishimoto, D. G. Fedorov, Phys. Chem. Chem. Phys. 18 (2016) 22047-22061. 270. Water molecules inside protein structure affect binding of monosaccharides with HIV-1 antibody 2G12. K. Ueno-Noto, K. Takano, J. Comput. Chem. 37 (2016) 2341-2348. 271. Hydration of ligands of influenza virus neuraminidase studied by the fragment molecular orbital method. K. Tokuda, C. Watanabe, Y. Okiyama, Y. Mochizuki, K. Fukuzawa, Y. Komeiji, J. Mol. Graph. Model. 69 (2016) 144-153. 272. Fragment molecular orbital nonadiabatic molecular dynamics for condensed phase systems. B. Nebgen, O. V. Prezhdo, J. Phys. Chem. A 120 (2016) 7205-7212. 273. FMO3-LCMO study of electron transfer coupling matrix element and pathway: Application to hole transfer between two tryptophans through cis- and trans-polyproline-linker systems. H. Kitoh-Nishioka, K. Ando, J. Chem. Phys. 145 (2016) 114103. 274. Comparative binding analysis of dipeptidyl peptidase IV (DPP-4) with antidiabetic drugs - An ab initio fragment molecular orbital study. S. Arulmozhiraja, N. Matsuo, E. Ishitsubo, S. Okazaki, H. Shimano, H. Tokiwa, PLoS ONE 11 (2016) e0166275. 275. Efficient geometry optimization of large molecular systems in solution using the fragment molecular orbital method. H. Nakata, D. G. Fedorov, J. Phys. Chem. A 120 (2016) 9794-9804. 276. Fragment molecular orbital (FMO) calculations on DNA by a scaled third-order Moller-Plesset perturbation (MP2.5) scheme. H. Yamada, Y. Mochizuki, K. Fukuzawa, Y. Okiyama, Y. Komeiji, Comp. Theor. Chem. 1101 (2017) 46-54. 277. Semi-empirical quantum evaluation of peptide - MHC class II binding. R. González, C. F. Suárez, H. J. Bohórquez, M. A. Patarroyo, M. E. Patarroyo, Chem. Phys. Lett. 668 (2017) 29-34. 278. Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding. Y. Nishimoto, D. G. Fedorov, J. Comp. Chem. 38 (2017) 406-418. 279. Mapping interaction energies in chorismate mutase with the fragment molecular orbital method. S. R. Pruitt, C. Steinmann, J. Phys. Chem. A 121 (2017) 1797-1807. 280. Specific interactions between amyloid-beta peptides in an amyloid-beta hexamer with three-fold symmetry: Ab initio fragment molecular orbital calculations in water. H. Ishimura, S. Tomioka, R. Kadoya, K. Shimamura, A. Okamoto, S. Shulga, N. Kurita, Chem. Phys. Lett. 672 (2017) 13-20. 281. Application of the fragment molecular orbital method analysis to fragment-based drug discovery of BET (bromodomain and extra-terminal proteins) inhibitors. M. Ozawa, T. Ozawa, K. Ueda, J. Mol. Graph. Model. 74 (2017) 73-82. 282. Rapid and accurate assessment of GPCR-ligand interactions using the fragment molecular orbital-based density-functional tight-binding method I. Morao, D. G. Fedorov, R. Robinson, M. Southey, A. Townsend-Nicholson, M. J. Bodkin, A. Heifetz, J. Comp. Chem. 38 (2017) 1987-1990. 283. Multiscale simulations on charge transport in covalent organic frameworks including dynamics of transfer integrals from the FMO-DFTB/LCMO approach. H. Kitoh-Nishioka, K. Welke, Y. Nishimoto, D. G. Fedorov, Stephan Irle, J. Phys. Chem. C 121 (2017) 17712-17726. 284. Specific interactions between androgen receptor and its ligand: ab initio molecular orbital calculations in water. I. Kobayashi, R. Takeda, R. Suzuki, K. Shimamura, H. Ishimura, R. Kadoya, K. Kawai, M. Takimoto-Kamimura, N. Kurita, J. Mol. Graph. Model. 75 (2017) 383-389. 285. Specific interactions between vitamin-D receptor and its ligands: Ab initio molecular orbital calculations in water. R. Takeda, I. Kobayashi, K. Shimamura, H. Ishimura, R. Kadoya, K. Kawai, A. Kittaka, M. Takimoto-Kamimura, N. Kurita, J. Ster. Biochem. Mol. Biol. 171 (2017) 75-79. 286. Dissipative particle dynamics (DPD) simulations with fragment molecular orbital (FMO) based effective parameters for 1-Palmitoyl-2-oleoyl phosphatidyl choline (POPC) membrane. H. Doi, K. Okuwaki, Y. Mochizuki, T. Ozawa, K. Yasuoka, Chem. Phys. Lett. 684 (2017) 427-432. 287. Relating stacking structures and charge transport in crystal polymorphs of the pyrrole-based pi-conjugated molecule. T. Fujita, Y. Haketa, H. Maeda, T. Yamamoto, Org. Electr. 49 (2017) 53-63. 288. Specific interactions between zinc metalloproteinase and its inhibitors: Ab initio fragment molecular orbital calculations. A. Ara, R. Kadoya, H. Ishimura, K. Shimamura, I. Sylte, N. Kurita, J. Mol. Graph. Model. 75 (2017) 277-286. 289. Proposal for novel curcumin derivatives as potent inhibitors against Alzheimer's disease: Ab initio molecular simulations on the specific interactions between amyloid-beta peptide and curcumin. S. Ota, M. Fujimori, H. Ishimura, S. Shulga, N. Kurita, Chem. Phys. Lett. 685 (2017) 482-489. 290. The role of CH/pi interactions in the high affinity binding of streptavidin and biotin. M. Ozawa, T. Ozawa, M. Nishio, K. Ueda, J. Mol. Graph. Model. 75 (2017) 117-124. 291. The FMO analysis of the molecular interaction of fentanyl derivatives with the mu-opioid receptor. M. Jaronczyk, P. F. J. Lipinski, J. Cz. Dobrowolski, J. Sadlej, Chem. Pap. 71 (2017) 1429-1443. 292. Theoretical analyses of triplet-triplet annihilation process of 9,10-diphenylanthracene in solution. R. Sato, H. Kitoh-Nishioka, T. Yanai, Y. Shigeta, Chem. Lett. 46 (2017) 873-875. 293. Many-body expansion of the Fock matrix in the fragment molecular orbital method. D. G. Fedorov, K. Kitaura, J. Chem. Phys. 147 (2017) 104106. 294. The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications. D. G. Fedorov, WIREs: Comp. Mol. Sc. 7 (2017) e1322. 295. Modeling and visualization for the fragment molecular orbital method with the graphical user interface FU, and analyses of protein-ligand binding. D. G. Fedorov, K. Kitaura, in Fragmentation: toward Accurate calculations on complex molecular systems. M. S. Gordon, Ed. Wiley, Hoboken, 2017, pp. 119-139. 296. Novel genes and mutations in patients affected by recurrent pregnancy loss. P. Quintero-Ronderos, E. Mercier, M. Fukuda, R. Gonzalez, C. F. Suarez, M. A. Patarroyo, D. Vaiman, J.-C. Gris, P. Laissue, PLoS ONE 12 (2017) e0186149. 297. Theoretical analysis of activity cliffs among benzofuranone-class pim1 inhibitors using the fragment molecular orbital method with molecular mechanics Poisson-Boltzmann surface area (FMO+MM-PBSA) approach. C. Watanabe, H. Watanabe, K. Fukuzawa, L. J. Parker, Y. Okiyama, H. Yuki, S. Yokoyama, H. Nakano, S. Tanaka, T. Honma, J. Chem. Inf. Model. 2017, 57, 2996-3010. 298. Exploring GPCR-ligand interactions with the fragment molecular orbital (FMO) Method. E. I. Chudyk, L. Sarrat, M. Aldeghi, D. G. Fedorov, M. J. Bodkin, T. James, M. Southey, R. Robinson, I. Morao, A. Heifetz, in Computational Methods for GPCR Drug Discovery. A. Heifetz (Ed.), Humana Press, New York, 2018, pp. 179-195. 299. Fluorescent pseudorotaxanes of a quinodicarbocyanine dye with gamma cyclodextrin. O. M. Bernstein, T. E. McGee, L. E. Silzel, J. W. Silzel, Spectr. Acta A: Mol. Biomol. Spectr. 189 (2018) 202-214. 300. Fragment molecular orbital based parametrization procedure for mesoscopic structure prediction of polymeric materials. K. Okuwaki, Y. Mochizuki, H. Doi, T. Ozawa, J. Phys. Chem. B 122 (2018) 338-347. 301. Specific interactions between mycobacterial FtsZ protein and curcumin derivatives: Molecular docking and ab initio molecular simulations. M. Fujimori, H. Sogawa, S. Ota, P. Karpov, S. Shulga, Y. Blume, N. Kurita, Chem. Phys. Lett. 692 (2018) 166-173. 302. Pair interaction energy decomposition analysis for density functional theory and density-functional tight-binding with an evaluation of energy fluctuations in molecular dynamics. D. G. Fedorov, K. Kitaura, J. Phys. Chem. A 122 (2018) 1781-1795 303. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding. Y. Nishimoto, D. G. Fedorov, J. Chem. Phys. 148 (2018) 064115. 304. Ab initio quantum chemical calculation of electron density, electrostatic potential, and electric field of biomolecule based on fragment molecular orbital method. T. Ishikawa, Int. J. Quantum Chem. 118 (2018) e25535. 305. Development of the fragment molecular orbital method for calculating nonlocal excitations in large molecular systems. T. Fujita, Y. Mochizuki, J. Phys. Chem. A 122 (2018) 3886-3898. 306. Proposal of potent inhibitors for vitamin-D receptor based on ab initio fragment molecular orbital calculations. R. Takeda, I. Kobayashi, R. Suzuki, K. Kawai, A. Kittaka, M. Takimoto-Kamimura, N. Kurita, J. Mol. Graph. Model. 80 (2018) 320-326. 307. Application of singular value decomposition to the inter-fragment interaction energy analysis for ligand screening. K. Maruyama, Y. Sheng, H. Watanabe, K. Fukuzawa, S. Tanaka, Comp. Theor. Chem. 1132 (2018) 23-34. 308. Molecular association model of PPARalpha and its new specific and efficient ligand, pemafibrate: Structural basis for SPPARMalpha. Y. Yamamoto, K. Takei, S. Arulmozhiraja, V. Sladek, N. Matsuo, S. Han, T. Matsuzaka, M. Sekiya, T. Tokiwa, M. Shoji, Y. Shigeta, Y. Nakagawa, H. Tokiwa, H. Shimano, Biochem. Biophys. Res. Comm. 499 (2018) 239-245. 309. Towards first-principles calculation of electronic excitations in the ring of the protein-bound bacteriochlorophylls. I. V. Polyakov, M. G. Khrenova, A. A. Moskovsky, B. M. Shabanov, A. V. Nemukhin, Chem. Phys. 505 (2018) 34-39. 310. Use of the multilayer fragment molecular orbital method to predict the rank order of protein-ligand binding affinities: A Case study using tankyrase 2 inhibitors. N. Okimoto, T. Otsuka, Y. Hirano, M. Taiji, ACS Omega 3 (2018) 4475-4485. 311. Analysis of solute-solvent interactions using the solvation model density combined with the fragment molecular orbital method. D. G. Fedorov, Chem. Phys. Lett. 702 (2018) 111-116. 312. Empirical corrections and pair interaction energies in the fragment molecular orbital method. D. G. Fedorov, J. C. Kromann, J. H. Jensen, Chem. Phys. Lett. 706 (2018) 328-333. 313. Computational analysis of the interaction energies between amino acid residues of the measles virus hemagglutinin and its receptors. F. Xu, S. Tanaka, Y. Shimane, M. Iwasawa, K. Ohishi, T. Maruyama, Viruses 10 (2018) 236. 314. Characterization of crystal water molecules in a high-affinity inhibitor and hematopoietic prostaglandin D synthase complex by interaction energy studies. D. Takaya, K. Inaka, A. Omura, K. Takenuki, M. Kawanishi, Y. Yabuki, Y. Nakagawa, K. Tsuganezawa, N. Ogawa, C. Watanabe, T. Honma, K. Aritake, Y. Urade, M. Shirouzu, A. Tanaka, Bioorg. Med. Chem. 26 (2018) 4726-4734. 315. Application of the fragment molecular orbital method to discover novel natural products for prion disease. J. Choi, H. Kim, X. Jin, H. Lim, S. Kim, I. Roh, H. Kang, K. Tai No, H. Sohn, Sc. Rep. 8 (2018) 13063. 316. Fragment molecular orbital study of the interaction between sarco/ endoplasmic reticulum Ca(2+)-ATPase and its inhibitor thapsigargin toward anti-malarial development. T. Ishikawa, S. Mizuta, O. Kaneko, K. Yahata, J. Phys. Chem. B 122 (2018) 7970-7977. 317. Fragment molecular orbital calculations with implicit solvent based on the Poisson-Boltzmann equation: implementation and DNA study. Y. Okiyama, T. Nakano, C. Watanabe, K. Fukuzawa, Y. Mochizuki, S. Tanaka, J. Phys. Chem. B 122 (2018) 4457-4471. 318. Electron transfer pathways of cyclobutane pyrimidine dimer photolyase revisited. R. Sato, H. Kitoh-Nishioka, K. Ando, T. Yamato, J. Phys. Chem. B 122 (2018) 6912-6921. 319. Characterization of crystal water molecules in a high-affinity inhibitor and hematopoietic prostaglandin D synthase complex by interaction energy studies. D. Takaya, K. Inaka, A. Omura, K. Takenuki, M. Kawanishi, Y. Yabuki, Y. Nakagawa, K. Tsuganezawa, N. Ogawa, C. Watanabe, T. Honma, K. Aritake, Y. Urade, M. Shirouzu, A. Tanaka, Bioorg. Med. Chem. 26 (2018) 4726-4734. 320. RI-MP3 calculations of biomolecules based on the fragment molecular orbital method. T. Ishikawa, K. Sakakura, Y. Mochizuki, J. Comp. Chem. 39 (2018) 1970-1978. 321. Theoretical analyses on water cluster structures in polymer electrolyte membrane by using dissipative particle dynamics simulations with fragment molecular orbital based effective parameters. K. Okuwaki, Y. Mochizuki, H. Doi, S. Kawada, T. Ozawa, K. Yasuoka, RSC Adv. 8 (2018) 34582-34595. 322. Analytic second derivatives for the efficient electrostatic embedding in the fragment molecular orbital method. H. Nakata, D. G. Fedorov, J. Comp. Chem. 39 (2018) 2039-2050. 323. Interaction between a single-stranded DNA and a binding protein viewed by the fragment molecular orbital method. Y. Komeiji, Y. Okiyama, Y. Mochizuki, K. Fukuzawa, Bull. Chem. Soc. Jpn. 91 (2018) 1596-1605. 324. Towards good correlation between fragment molecular orbital interaction energies and experimental IC50 for ligand binding: A case study of p38 MAP kinase. Y. Shenga, H. Watanabe, K. Maruyama, C. Watanabe, Y. Okiyama, T. Honma, K. Fukuzawa, S. Tanaka, Comp. Str. Biotechn. J. 16 (2018) 421-434. 325. Development of the fragment-based COHSEX method for large and complex molecular systems. T. Fujita, Y. Noguchi, Phys. Rev. B 98 (2018) 205140. 326. Protein Residue Networks from Energetic and Geometric Data: Are They Identical? V. Sladek, H. Tokiwa, H. Shimano, Y. Shigeta, J. Chem. Theory Comput. 14 (2018) 6623-6631. 327. Development of an Analysis Toolkit, AnalysisFMO, to Visualize Interaction Energies Generated by Fragment Molecular Orbital Calculations. T. Tokiwa, S. Nakano, Y. Yamamoto, T. Ishikawa, S. Ito, V. Sladek, K. Fukuzawa, Y. Mochizuki, H. Tokiwa, F. Misaizu, Y. Shigeta, J. Chem. Inf. Model. 59 (2019) 25-30. 328. Ligand chirality can affect histidine protonation of vitamin-D receptor: ab initio molecular orbital calculations in water. Y. Terauchi, R. Suzuki, R. Takeda, I. Kobayashi, A. Kittaka, M. Takimoto-Kamimura, N. Kurita, J. Ster. Biochem. Mol. Biol. 186 (2019) 89-95. 329. Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson-Boltzmann Equation: II. Protein and Its Ligand-Binding System Studies. Y. Okiyama, C. Watanabe, K. Fukuzawa, Y. Mochizuki, T. Nakano, S. Tanaka, J. Phys. Chem. B 123 (2019) 957-973. 330. Specific interactions between 2-trans enoyl-acyl carrier protein reductase and its ligand: Protein-ligand docking and ab initio fragment molecular orbital calculations. N. Phusi, R. Sato, T. Ezawa, S. Tomioka, C. Hanwarinroj, B. Khamsri, P. Kamsri, A. Punkvang, P. Pungpo, N. Kurita, J. Mol. Graph. Model. 88 (2019) 299-308. 331. Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach. A. Heifetz, T. James, M. Southey, I. Morao, M. Aldeghi, L. Sarrat, D. G. Fedorov, M. J. Bodkin, A. Townsend-Nicholson, Curr. Opin. Struct. Biol. 55 (2019) 85-92. 332. Multithreaded parallelization of the energy and analytic gradient in the fragment molecular orbital method. V. Mironov, Y. Alexeev, D. G. Fedorov, Int. J. Quant. Chem. 119 (2019) e25937. 333. The fragment molecular orbital method based on long-range corrected density-functional tight-binding. V. Q. Vuong, Y. Nishimoto, D. G. Fedorov, B. G. Sumpter, T. A. Niehaus, S. Irle, J. Chem. Theory Comput. 15 (2019) 3008-3020. 334. Simulations of infrared and Raman spectra in solution using the fragment molecular orbital method. H. Nakata, D. G. Fedorov, Phys. Chem. Chem. Phys. 21 (2019) 13641-13652. 335. Molecular electrostatic potential and electron density of large systems in solution computed with the fragment molecular orbital method. D. G. Fedorov, A. Brekhov, V. Mironov, Y. Alexeev, J. Phys. Chem. A 123 (2019) 6281-6290. 336. Solvent screening in zwitterions analyzed with the fragment molecular orbital method. D. G. Fedorov, J. Chem. Theory Comput. 15 (2019) 5404-5416. 337. Lanthanide-induced conformational change of methanol dehydrogenase involving coordination change of cofactor pyrroloquinoline quinone. S. Tsushima, Phys. Chem. Chem. Phys. 21 (2019) 21979-21983. 338. Locating minimum energy crossings of different spin states using the fragment molecular orbital method. D. S. Kaliakin, D. G. Fedorov, Y. Alexeev, S. A. Varganov, J. Chem. Theory Comput. 15 (2019) 6074-6084. 339. Investigation of hot spot region in XIAP inhibitor binding site by fragment molecular orbital method. H. Lim, X. Jin, J. Kim, S. Hwang, K. B. Shin, J. Choi, K. Nam, K. T. No, Comp. Str. Biotechn. J. 17 (2019) 1217-1225. 340. Investigation of protein-protein interactions and hot spot region between PD-1 and PD-L1 by fragment molecular orbital method. H. Lim, J. Chun, X. Jin, J. Kim, J. Yoon, K. T. No, Sc. Rep. 9 (2019) 16727. 341. Hybrid distributed/shared memory model for the RI-MP2 method in the fragment molecular orbital framework. B. Q. Pham, M. S. Gordon, J. Chem. Theory Comput. 15 (2019) 5252-5258. 342. Interaction between calcite and adsorptive peptide analyzed by fragment molecular orbital method. K. Kato, K. Fukuzawa, Y. Mochizuki, Jap. J. App. Phys. 58 (2019) 120906. 343. Fully quantum chemical treatment of chromophore? Protein interactions in phytochromes. R. Gonzalez, M. A. Mroginski, J. Phys. Chem. B 123 (2019) 9819-9830. 344. Recognition of repulsive and attractive regions of selected serotonin receptor binding site using FMO-EDA approach. P. Sliwa, R. Kurczab, R. Kafel, A. Drabczyk, J. Jaskowska, J. Mol. Mod. 25 (2019) 114. 345. A 3D-QSAR analysis of CDK2 inhibitors using FMO calculations and PLS regression. T. Yoshida, S. Hirono, Chem. Pharm. Bull. 67 (2019) 546-555. 346. Charge-transfer excited states in the donor/acceptor interface from large-scale GW calculations. T. Fujita, Y. Noguchi, T. Hoshi, J. Chem. Phys. 151 (2019) 114109. 347. Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal. C. A. Ortiz-Mahecha, H. J. Bohórquez, W. A. Agudelo, M. A. Patarroyo, M. E. Patarroyo, C. F. Suárez, J. Chem. Inf. Model. 59 (2019) 5148-5160. 348. Binding interaction analysis of RNA aptamer-Fc region of human immunoglobulin G using fragment molecular orbital calculation. H. Yoshida, K. Sato, T. Ishikawa, T. Sakamoto, K. Yamagishi, Chem. Phys. Lett. 738 (2020) 136854. 349. Proposal of therapeutic curcumin derivatives for Alzheimer's disease based on ab initio molecular simulations. T. Shinzato, R. Sato, K. Suzuki, S. Tomioka, H. Sogawa, S. Shulga, Y. Blume, N. Kurita, Chem. Phys. Lett. 738 (2020) 136883. 350. Binding sites of Zantrin inhibitors to the bacterial cell division protein FtsZ: Molecular docking and ab initio molecular orbital calculations. H. Sogawa, R. Sato, K. Suzuki, S. Tomioka, T. Shinzato, P. Karpov, S. Shulga, Y. Blume, N. Kurita, Chem. Phys. 530 (2020) 110603. 351. Development of the FMO/RI-MP2 fully analytic gradient using a hybrid-distributed/shared memory programming model. B. Q. Pham, M. S. Gordon, J. Chem. Theory Comp. 16 (2020) 1039-1054. 352. FMOxFMO: elucidating excitonic interactions in the Fenna-Matthews-Olson complex with the fragment molecular orbital method. D. S. Kaliakin, H. Nakata, Y. Kim, Q. Chen, D. G. Fedorov, L. V. Slipchenko, J. Chem. Theory Comp. 16 (2020) 1175-1187. 353. Systematic interaction analysis of anti-human immunodeficiency virus type-1 neutralizing antibodies with high mannose glycans using fragment molecular orbital and molecular dynamics methods. M. Kusumoto, K. Ueno-Noto, K. Takano, J. Comp. Chem. 41 (2020) 31-42. 354. Pair interaction energy decomposition analysis (PIEDA) and experimental approaches for investigating water interactions with hydrophilic and hydrophobic membranes. M. Maghami, A. Abdelrasoul, J. Mol. Graph. Mod. 96 (2020) 107540. 355. Ab Initio Fragment Molecular Orbital-Based Molecular Dynamics (FMO-MD) Simulations of (NH3)32 Cluster: Effects of Electron Correlation. M. Ninomiya, H. Doi, Y. Matsumoto, Y. Mochizuki, Y. Komeiji, Bull. Chem. Soc. Jpn. 93 (2020) 553-560. 356. Characterizing interhelical interactions of G-protein coupled receptors with the fragment molecular orbital method. A. Heifetz, I. Morao, M. M. Babu, T. James, M. W. Y. Southey, D. G. Fedorov, M. Aldeghi, M. J. Bodkin, A. Townsend-Nicholson, J. Chem. Theory Comput. 16 (2020) 2814-2824. 357. Fragmentation at sp2 carbon atoms in fragment molecular orbital method. Y. Akinaga, K. Kato, T. Nakano, K. Fukuzawa, Y. Mochizuki, J. Comp. Chem. 41 (2020) 1416-1420. 358. Guiding medicinal chemistry with fragment molecular orbital (FMO) method. A. Heifetz, T. James, M. Southey, M. J. Bodkin, S. Bromidge. In Quantum mechanics in drug discovery, A. Heifetz (Ed.), Methods in molecular biology, vol. 2114, pp. 37-48, Springer, New York, 2020. 359. Analyzing interactions with the fragment molecular orbital method. D. G. Fedorov, In Quantum mechanics in drug discovery, A. Heifetz (Ed.), Methods in molecular biology, vol. 2114, pp. 49-73, Springer, New York, 2020. 360. Geometry optimization, transition state search, and reaction path mapping accomplished with the fragment molecular orbital method. H. Nakata, D. G. Fedorov, In Quantum mechanics in drug discovery, A. Heifetz (Ed.), Methods in molecular biology, vol. 2114, pp. 87-104, Springer, New York, 2020. 361. Taking water into account with the fragment molecular orbital method. Y. Okiyama, K. Fukuzawa, Y. Komeiji, S. Tanaka, In Quantum mechanics in drug discovery, A. Heifetz (Ed.), Methods in molecular biology, vol. 2114, pp. 105-122, Springer, New York, 2020. 362. Accurate scoring in seconds with the fragment molecular orbital and density-functional tight-binding methods. I. Morao, A. Heifetz, D. G. Fedorov, In Quantum mechanics in drug discovery, A. Heifetz (Ed.), Methods in molecular biology, vol. 2114, pp. 143-148, Springer, New York, 2020. 363. Analyzing GPCR-ligand interactions with the fragment molecular orbital (FMO) method. A. Heifetz, T. James, M. Southey, I. Morao, D. G. Fedorov, M. J. Bodkin, A. Townsend-Nicholson, In Quantum mechanics in drug discovery, A. Heifetz (Ed.), Methods in molecular biology, vol. 2114, pp. 163-176, Springer, New York, 2020. 364. Characterizing rhodopsin-arrestin interactions with the fragment molecular orbital (FMO) method. A. Heifetz, A. Townsend-Nicholson, In Quantum mechanics in drug discovery, A. Heifetz (Ed.), Methods in molecular biology, vol. 2114, pp. 177-186, Springer, New York, 2020. 365. Characterizing protein-protein interactions with the fragment molecular orbital method. A. Heifetz, V. Sladek, A. Townsend-Nicholson, D. G. Fedorov, In Quantum mechanics in drug discovery, A. Heifetz (Ed.), Methods in molecular biology, vol. 2114, pp. 187-206, Springer, New York, 2020. 366. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method. D. Takaya, H. Niwa, J. Mikuni, K. Nakamura, N. Handa, A. Tanaka, S. Yokoyama, T. Honma, J. Mol. Graph. Model. 99 (2020) 107599. 367. Three-body energy decomposition analysis based on the fragment molecular orbital method. D. G. Fedorov, J. Phys. Chem. A 124 (2020) 4956-4971. 368. Machine learning prediction of inter-fragment interaction energies between ligand and amino-acid residues on the fragment molecular orbital calculations for Janus kinase - inhibitor complex. S. Tokutomi, K. Shimamura, K. Fukuzawa, S. Tanaka, Chem. Phys. Lett. 757 (2020) 137883. 369. Intermolecular interaction among Remdesivir, RNA and RNA-dependent RNA polymerase of SARS-CoV-2 analyzed by fragment molecular orbital calculation. K. Kato, T. Honma, K. Fukuzawa, J. Mol. Graph. Model. 100 (2020) 107695. 370. Identification of correlated inter-residue interactions in protein complex based on the fragment molecular orbital method. S. Tanaka C, Watanabe, T. Honma, K. Fukuzawa, K. Ohishi, T. Maruyama, J. Mol. Graph. Model. 100 (2020) 107650. 371. High-precision atomic charge prediction for protein systems using fragment molecular orbital calculation and machine learning. K. Kato, T. Masuda, C. Watanabe, N. Miyagawa, H. Mizouchi, S. Nagase, K. Kamisaka, K. Oshima, S. Ono, H. Ueda, A. Tokuhisa, R. Kanada, M. Ohta, M. Ikeguchi, Y. Okuno, K. Fukuzawa, T. Honma, J. Chem. Inf. Model. 60 (2020) 3361-3368. 372. Fragment molecular orbital based interaction analyses on COVID-19 main protease-inhibitor N3 complex (PDB ID: 6LU7). R. Hatada, K. Okuwaki, Y. Mochizuki, Y. Handa, K. Fukuzawa, Y. Komeiji, Y. Okiyama, S. Tanaka, J. Chem. Inf. Model. 60 (2020) 3593-3602 373. Revisiting the charge-transfer states at pentacene/C(60)interfaces with the GW/Bethe-Salpeter equation approach. T. Fujita, Y. Noguchi, T. Hoshi, Materials 13 (2020) 2728. 374. Hot spot profiles of SARS-CoV-2 and human ACE2 receptor protein protein interaction obtained by density functional tight binding fragment molecular orbital method. H. Lim, A. Baek, J. Kim, M. S. Kim, J. Liu, K. Nam, J. Yoon, K. T. No, Sc. Rep. 10 (2020) 16862. 375. A novel method for analysis of the electrostatic complementarity of protein-protein interaction based on fragment molecular orbital method. T. Ishikawa, Chem. Phys. Lett. 761 (2020) 138103. 376. Tunneling matrix element and tunneling pathways of protein electron transfer calculated with a fragment molecular orbital method. H. Kitoh-Nishioka, Y. Shigeta, K. Ando, J. Chem. Phys. 153 (2020) 104104. 377. Characterization of PD-L1 binding sites by a combined FMO/GRID-DRY approach. R. Paciotti, M. Agamennone, C. Coletti, L. Storchi, J. Comp.-Aided Mol. Des. 34 (2020) 897-914. 378. Analytic first and second derivatives of the energy in the fragment molecular orbital method combined with molecular mechanics. H. Nakata, D. G. Fedorov, Int. J. Quantum Chem. 120 (2020) e26414. 379. Partition analysis for density-functional tight-binding. D. G. Fedorov, J. Phys. Chem. A 124 (2020) 10346-10358. 380. Specific interactions between tau protein and curcumin derivatives: Molecular docking and ab initio molecular orbital simulations. R. Sato, S. Vohra, S. Yamamoto, K. Suzuki, P. Karpov, S. Shulga, Y. Blume, N. Kurita, J. Mol. Graph. Model. 98 (2020) 107611. 381. Folding simulation of small proteins by dissipative particle dynamics (DPD) with non-empirical interaction parameters based on fragment molecular orbital calculations. K. Okuwaki, H. Doi, K. Fukuzawa, Y. Mochizuki, Appl. Phys. Expr. 13 (2020) 017002. 382. Interaction analyses of SARS-CoV-2 spike protein based on fragment molecular orbital calculations. K. Akisawa, R. Hatada, K. Okuwaki, Y. Mochizuki, K. Fukuzawa, Y. Komeiji, S. Tanaka, RSC Adv. 11 (2021) 3272-3279. 383. Statistical interaction analyses between SARS-CoV-2 main protease and inhibitor N3 by combining molecular dynamics simulation and fragment molecular orbital calculation. R. Hatada, K. Okuwaki, K. Akisawa, Y. Mochizuki, Y. Handa, K. Fukuzawa, Y. Komeiji, Y. Okiyama, S. Tanaka, Appl. Phys. Expr. 14 (2021) 027003. 384. Fragment molecular orbital method as cluster expansion. S. Tanaka. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 3-14. 385. Recent development of the fragment molecular orbital method in GAMESS. D. G. Fedorov. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 31-51. 386. The ABINIT-MP program. Y. Mochizuki, T. Nakano, K. Sakakura, Y. Okiyama, H. Watanabe, K. Kato, Y. Akinaga, S. Sato, J. Yamamoto, K. Yamashita, T. Murase, T. Ishikawa, Y. Komeiji, Y. Kato, N. Watanabe, T. Tsukamoto, H. Mori, K. Okuwaki, S. Tanaka, A. Kato, C. Watanabe, K. Fukuzawa. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 53-67. 387. PAICS: development of an open-source software of fragment molecular orbital method for biomolecule. T. Ishikawa. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 69-76. 388. Open-architecture program of fragment molecular orbital method for massive parallel computing (OpenFMO) with GPU acceleration. H. Kitoh-Nishioka, H. Umeda, Y. Shigeta In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 77-90. 389. How to perform FMO calculation in drug discovery. K. Fukuzawa, C. Watanabe, Y. Okiyama, T. Nakano. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 93-125. 390. FMO drug design consortium. K. Fukuzawa, S. Tanaka, Y. Yagi, N. Kurita, N. Kawashita, K. Takaba, T. Honma. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 127-181. 391. Development of an automated FMO calculation protocol to construction of FMO database. C. Watanabe, H. Watanabe, Y. Okiyama, D. Takaya. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 183-203. 392. Application of FMO to ligand design: SBDD, FBDD, and protein-protein interaction. T. Ozawa, M. Ozawa. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 205-251. 393. Drug discovery screening by combination of X-ray crystal structure analysis and FMO calculation. M. Takimoto-Kamimura, N. Kurita. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 253-265. 394. Cooperative study combining X-ray crystal structure analysis and FMO calculation: interaction analysis of FABP4 inhibitors. U. Tagami, K. Takahashi. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 267-279. 395. Application of FMO for protein-ligand binding affinity prediction. K. Takaba. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 281-294. 396. Elucidating the efficacy of clinical drugs using FMO. S. Arulmozhiraja, H. Tokiwa, H. Shimano. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 323-339. 397. Application of fragment molecular orbital calculations to functional analysis of enzymes. S. Nakano, S. Ito, H. Tokiwa. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 341-355. 398. AnalysisFMO toolkit: a PyMOL plugin for 3D-visualization of interaction energies in proteins (3D-VIEP) calculated by the FMO method. T. Tokiwa, S. Nakano, H. Tokiwa, Y. Shigeta. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 357-370. 399. FMO interfaced with molecular dynamics simulation. Y. Komeiji, T. Ishikawa. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 373-389. 400. Linear combination of molecular orbitals of fragments (FMO-LCMO) method: its application to charge transfer studies. H. Kitoh-Nishioka, R. Sato, Y. Shigeta, K. Ando. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 391-405. 401. Modeling of solid and surface. K. Kato, A. Hashimoto, E. Tamiya, K. Fukuzawa, Y. Ishikawa, Y. Mochizuki. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 407-424. 402. Development of the analytic second derivatives for the fragment molecular orbital method. H. Nakata, D. G. Fedorov. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 425-458. 403. The FMO-DFTB method. Y. Nishimoto, S. Irle. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 459-485. 404. New methodology and framework information science-assisted analysis of FMO results for drug design. T. Takagi. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 511-528. 405. Extension to multiscale simulations. K. Okuwaki, T. Ozawa, Y. Mochizuki. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 529-546. 406. FMO-based investigations of excited-state dynamics in molecular aggregates. T. Fujita, T. Hoshi. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 547-566. 407. Application of the fragment molecular orbital method to organic charge transport materials in xerography: a feasibility study and a charge mobility analysis. I. Fujino, D. G. Fedorov, K. Kitaura. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 567-587. 408. Multi-level parallelization of the fragment molecular orbital method in GAMESS. V. A. Mironov, Y. Alexeev, D. G. Fedorov, H. Umeda, S. Pruitt, A. Gaenko, M. S. Gordon. In Recent advances of the fragment molecular orbital method, Y. Mochizuki, S. Tanaka, K. Fukuzawa (Eds), Springer, Singapore, 2021, pp. 601-616. 409. FMODB: the world's first database of quantum mechanical calculations for biomacromolecules based on the fragment molecular orbital method. D. Takaya, C. Watanabe, S. Nagase, K. Kamisaka, Y. Okiyama, H. Moriwaki, H. Yuki, T. Sato, N. Kurita, Y. Yagi, T. Takagi, N. Kawashita, K. Takaba, T. Ozawa, M. Takimoto-Kamimura, S. Tanaka, K. Fukuzawa, T. Honma, J. Chem. Inf. Model. 61 (2021) 777-794. 410. Acceleration of environmental electrostatic potential using Cholesky decomposition with adaptive metric (CDAM) for fragment molecular orbital (FMO) method. Y. Okiyama, T. Nakano, C. Watanabe, K. Fukuzawa, Y. Komeiji, K. Segawa, Y. Mochizuki, Bull. Chem. Soc. Jap. 94 (2021) 91-96. 411. Prediction of lattice energy of benzene crystals: a robust theoretical approach. A. L. P. Nguyen, T. G. Mason, B. D. Freeman, E. I. Izgorodina, J. Comp. Chem 42 (2021) 248-260. 412. Proposal of novel inhibitors for vitamin-D receptor: Molecular docking, molecular mechanics and ab initio molecular orbital simulations. S. Nakamura, R. Saito, S. Yamamoto, Y. Terauchi, A. Kittaka, M. Takimoto-Kamimura, N. Kurita, Biophys. Chem. 270 (2021) 106540. 413. The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions. Y. Nishimoto, D. G. Fedorov, J. Chem. Phys. 154 (2021) 111102. 414. Molecular recognition of SARS-CoV-2 spike glycoprotein: quantum chemical hot spot and epitope analyses. C. Watanabe, Y. Okiyama, S. Tanaka, K. Fukuzawa, T. Honma, Chem. Sci. 12 (2021) 4722-4739. 415. Partitioning of the vibrational free energy. D. G. Fedorov, J. Phys. Chem. Lett. 12 (2021) 6628-6633. 416. Electron density from the fragment molecular orbital method combined with density-functional tight-binding. D. G. Fedorov, Chem. Phys. Lett. 780 (2021) 138900. 417. Intermolecular interaction analyses on SARS-CoV-2 spike protein receptor binding domain and human angiotensin-converting enzyme 2 receptor-blocking antibody/peptide using fragment molecular orbital calculation. K. Watanabe, C. Watanabe, T. Honma, Y.-S. Tian, Y. Kawashima, N. Kawashita, T. Takagi, K. Fukuzawa, J. Phys. Chem. Lett. 12 (2021) 4059-4066. 418. Computational ab initio interaction analyses between neutralizing antibody and SARS-CoV-2 variant spike proteins using the fragment molecular orbital method. K. Watanabe, C. Watanabe, T. Honma, Y.-S. Tian, Y. Kawashima, N. Kawashita, K. Fukuzawa, T. Takagi, Bull. Chem. Soc. Jap. 94 (2021) 1794-1798. 419. Dynamic cooperativity of ligand-residue interactions evaluated with the fragment molecular orbital method. S. Tanaka, S. Tokutomi, R. Hatada, K. Okuwaki, K. Akisawa, K. Fukuzawa, Y. Komeiji, Y. Okiyama, Y. Mochizuki, J. Phys. Chem. B 125 (2021) 6501-6512. 420. Proposal of novel natural inhibitors of severe acute respiratory syndrome coronavirus 2 main protease: Molecular docking and ab initio fragment molecular orbital calculations. D. Shaji, S. Yamamoto, R. Saito, R. Suzuki, S. Nakamura, N. Kurita, Biophys. Chem. 275 (2021) 106608. 421. Density-matrix based scheme of basis selection for linear combination of fragment molecular orbitals. Y. Okiyama, Y. Mochizuki, M. Yamanaka, S. Tanaka, J. Phys. Soc. Jpn. 90, 064301 (2021). 422. Proposal of novel potent inhibitors against androgen receptor based on ab initio molecular orbital calculations. S. Nakamura, R. Saito, S. Yamamoto, I. Kobayashi, R. Takeda, R. Suzuki, K. Kawai, M. Takimoto-Kamimura, N. Kurita, J. Mol. Graph. Model. 105 (2021) 107873. 423. Quantum mechanics helps uncover atypical recognition features in the flavin mononucleotide riboswitch. I. Deb, H. Wong, C. Tacubao, A. T. Frank, J. Phys. Chem. B 125 (2021) 8342-8350. 424. Quantum-mechanical structure optimization of protein crystals and analysis of interactions in periodic systems. T. Nakamura, T. Yokaichiya, D. G. Fedorov, J. Phys. Chem. Lett. 12 (2021) 8757-8762. 425. Energy decomposition analysis of the adhesive interaction between an epoxy resin layer and a silica surface. C. Higuchi, K. Yoshizawa, Langmuir 37 (2021) 8417-8425. 426. Visualization of the interfacial electrostatic complementarity: a method for analysis of protein-protein interaction based on ab initio quantum chemical calculations. H. Ozono, T. Ishikawa, J. Chem. Theory Comp. 17 (2021) 5600-5610. 427. Special features of COVID-19 in the FMODB: fragment molecular orbital calculations and interaction energy analysis of SARS-CoV-2-related proteins. K. Fukuzawa, K. Kato, C. Watanabe, Y. Kawashima, Y. Handa, A. Yamamoto, K. Watanabe, T. Ohyama, K. Kamisaka, D. Takaya, T. Honma, J. Chem. Inf. Model. 61 (2021) 4594-4612. 428. Hot spot analysis of YAP-TEAD protein-protein interaction using the fragment molecular orbital method and its application for inhibitor discovery. J. Kim, H. Lim, S. Moon, S. Y. Cho, M. Kim, J. H. Park, H. W. Park, K. T. No, Cancers 13 (2021) 4246. 429. Evaluation of selective COX-2 inhibition and in silico study of kuwanon derivatives isolated from morus alba. S.-H. Baek, S. Hwang, T. Park, Y.-J. Kwon, M. Cho, D. Park, Sc. Rep. 22 (2021) 3659. 430. On the question of steric repulsion versus noncovalent attractive interactions in chiral phosphoric acid catalyzed asymmetric reactions. S. Tribedi, K. Kitaura, T. Nakajima, R. B. Sunoj, Phys. Chem. Chem. Phys. 23 (2021) 18936-18950. 431. Interaction analysis on the SARS-CoV-2 spike protein receptor binding domain using visualization of the interfacial electrostatic complementarity. T. Ishikawa, H. Ozono, K. Akisawa, R. Hatada, K. Okuwaki, Y. Mochizuki, J. Phys. Chem. Lett. 12 (2021) 11267-11272. 432. Fragment-based excited-state calculations using the GW approximation and the Bethe-Salpeter equation. T. Fujita, Y. Noguchi, J. Phys. Chem. A 125 (2021) 10580-10592. 433. Ligand binding: evaluating the contribution of the water molecules network using the fragment molecular orbital method. I. Lukac, P. G. Wyatt, I. H. Gilbert, Fabio Zuccotto, J. Comp.-Aid. Mol. Des. 35 (2021) 1025-1036. 434. Proposal of selective inhibitor for bacterial zinc metalloprotease: Molecular mechanics and ab initio molecular orbital calculations. K. Imai, R. Saito, T. Ezawa, S. Sugiyama, I. Sylte, N. Kurita, J. Mol. Graph. Model. 110 (2022) 108047. 435. Fragment molecular orbital calculations for biomolecules. K. Fukuzawa, S. Tanaka, Curr. Opin. Struct. Biol. 72 (2022) 127-134. 436. Analysis of guest adsorption on crystal surfaces based on the fragment molecular orbital method. T. Nakamura, T. Yokaichiya, D. G. Fedorov, J. Phys. Chem. A 126 (2022) 957-969. 437. Free energy decomposition analysis based on the fragment molecular orbital method. D. G. Fedorov, T. Nakamura, J. Phys. Chem. Lett. 13 (2022) 1596-1601. 438. Computational approach to elucidate the formation and stabilization mechanism of amorphous formulation using molecular dynamics simulation and fragment molecular orbital calculation. X. Mai, K. Higashi, K. Fukuzawa, K. Ueda, K. Kadota, Y. Tozuka, E. Yonemochi, K. Moribe, Int. J. Pharmaceutics 615 (2022) 121477 439. Identification of key stabilizing interactions of amyloid-beta oligomers based on fragment molecular orbital calculations on macrocyclic beta-hairpin peptides. R. Firouzi, B. Noohi, Prot.: Str. Funct. Bioinf. 90 (2022) 229-238. 440. Specific interactions between the alkaline protease of P. aeruginosa and its natural peptide inhibitor: ab initio molecular simulations. R. Saito, K. Imai, S. Yamamoto, T. Ezawa, S. Sugiyama, L. S. M. Evenseth, I. Sylte, N. Kurita, J. Mol. Model. 28 (2022) 10. 441. Residue interactions affecting the deprotonation of internal guanine moieties in oligodeoxyribonucleotides, calculated by FMO methods. J. C. González-Olvera, A. Zamorano-Carrillo, G. Arreola-Jardón, R. C. Pless, J. Mol. Model. 28 (2022) 43. 442. Evaluation of protein descriptors in computer-aided rational protein engineering tasks and its application in property prediction in SARS-CoV-2 spike glycoprotein. H. Lim, H.-N. Jeon, S. Lim, Y. Jang, T. Kim, H. Cho, J.-G. Pan, K. T. No, Comp. Str. Biotechn. J. 20 (2022) 788-798. 443. Towards a quantitative description of excitonic couplings in photosynthetic pigment-protein complexes: quantum chemistry driven multiscale approaches. C. Friedl, D. G. Fedorov, T. Renger, Phys. Chem. Chem. Phys. 24 (2022) 5014-5038. 444. The catalytic activity and adsorption in faujasite and ZSM-5 zeolites: the role of differential stabilization and charge delocalization. T. Nakamura, D. G. Fedorov, Phys. Chem. Chem. Phys. 24 (2022) 7739-7747. 445. Halogenated baicalein as a promising antiviral agent toward SARS-CoV-2 main protease. K. Hengphasatporn, P. Wilasluck, P. Deetanya, K. Wangkanont, W. Chavasiri, P. Visitchanakun, A. Leelahavanichkul, W. Paunrat, S. Boonyasuppayakorn, T. Rungrotmongkol, S. Hannongbua, Y. Shigeta, J. Chem. Inf. Model. 62 (2022) 1498-1509. 446. Polarization energies in the fragment molecular orbital method. D. G. Fedorov, J. Comp. Chem. 43 (2022) 1094-1103. 447. Interaction analysis of the spike protein of delta and omicron variants of SARS-CoV-2 with hACE2 and eight monoclonal antibodies using the fragment molecular orbital method. S. Hwang, S.-H. Baek, D. Park, J. Chem. Inf. Model. 62 (2022) 1771-1782. 448. Identification of novel natural product inhibitors against matrix metalloproteinase 9 using quantum mechanical fragment molecular orbital-based virtual screening methods. H. Lim, H. Hong, S. Hwang, S. J. Kim, S. Y. Seo, K. T. No, Int. J. Mol. Sci. 23 (2022) 4438. 449. A study on the effect of the substituent against PAK4 inhibition using in silico methods. H. R. Yoon, C. C. Chai, C. H. Kim, N. S. Kang, Int. J. Mol. Sci. 23 (2022) 3337. 450. Collective residue interactions in trimer complexes of SARS-CoV-2 spike proteins analyzed by fragment molecular orbital method, K. Okuwaki, K. Akisawa, R. Hatada, Y. Mochizuki, K. Fukuzawa, Y. Komeiji, S. Tanaka, Appl. Phys. Expr. 15 (2022) 017001. 451. A double exponential coupled cluster theory in the fragment molecular orbital framework. A. Chakraborty, S. Tribedi, R. Maitra, J. Chem. Phys. 156 (2022) 244117. 452. Protein-ligand binding affinity prediction of cyclin-dependent kinase-2 inhibitors by dynamically averaged fragment molecular orbital-based interaction energy. K. Takaba, C. Watanabe, A. Tokuhisa, Y. Akinaga, B. Ma, R. Kanada, M. Araki, Y. Okuno, Y. Kawashima, H. Moriwaki, N. Kawashita, T. Honma, K. Fukuzawa, S. Tanaka, J. Comp. Chem. 43 (2022) 1362-1371. 453. Evaluating the correlation of binding affinities between isothermal titration calorimetry and fragment molecular orbital method of estrogen receptor beta with diarylpropionitrile (DPN) or DPN derivatives. C. Handa, Y. Yamazaki, S. Yonekubo, N. Furuya, T. Momose, T. Ozawa, T. Furuishi, K. Fukuzawa, E. Yonemochi, J. Ster. Biochem. Mol. Biol. 222 (2022) 106152. 454. Hotspot identification and drug design of protein-protein interaction modulators using the fragment molecular orbital method. S. Monteleone, D. G. Fedorov, A. Townsend-Nicholson, M. Southey, M. Bodkin, A. Heifetz, J. Chem. Inf. Model. 62 (2022) 3784-3799. 455. Quantification and neutralization of the interfacial electrostatic potential and visualization of the dispersion interaction in visualization of the interfacial electrostatic complementarity. H. Ozono, K. Mimoto, T. Ishikawa, J. Phys. Chem. B 126 (2022) 8415-8426. 456. Interspecies comparison of interaction energies between photosynthetic protein RuBisCO and 2CABP ligand. M. Fujii, S. Tanaka, Int. J. Mol. Sci. 23 (2022) 11347. 457. The importance of charge transfer and solvent screening in the interactions of backbones and functional groups in amino acid residues and nucleotides. V. Sladek, D. G. Fedorov, Int. J. Mol. Sci. 23 (2022) 13514. 458. The FMO2 analysis of the ligand-receptor binding energy: the biscarbene-gold(I)/DNA G-quadruplex case study. R. Paciotti, C. Coletti, A. Marrone, N. Re, J. Comput. Aided Mol. Des. 36 (2022) 851-866. 459. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method. D. G. Fedorov, J. Chem. Phys. 157 (2022) 231001. 460. Scaling correlated fragment molecular orbital calculations on Summit. G. Barca, C. Snowdon, J. Vallejo, F. Kazemian, A. P. Rendell, M. S. Gordon, Proc. Supercomputing 2022, Dallas, 2022, pp. 72-85. 461. Complete guide to the fragment molecular orbital method in GAMESS. D. G. Fedorov, World Scientific, Singapore, 2023. 462. Protein-protein interaction modelling with the fragment molecular orbital method. S. Tanaka, in K. Tsumoto, D. Kuroda (Eds.) Computer-aided antibody design. Methods in molecular biology, vol. 2552, Humana, New York, 2023, pp. 295-305. 463. System truncation accelerates binding affinity calculations with the fragment molecular orbital method: A benchmark study. S. Nakamura, T. Akaki, K. Nishiwaki, M. Nakatani, Y. Kawase, Y. Takahashi, I. Nakanishi, J. Comp. Chem. 44 (2023) 824-831. 464. Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems. R. Einsele, J. Hoche, R. Mitrić, J. Chem. Phys. 158 (2023) 044121. 465. Structure-based drug design of novel M. tuberculosis InhA inhibitors based on fragment molecular orbital calculations. N. Phusi, Y. Hashimoto, N. Otsubo, K. Imai, P. Thongdee, D. Sukchit, P. Kamsri, A. Punkvang, K. Suttisintong, P. Pungpo, N. Kurita, Comp. Biol. Med. 152 (2023) 106434. 466. Analytic gradient for time-dependent density functional theory combined with the fragment molecular orbital method. H. Nakata, D. G. Fedorov, J. Chem. Theory Comp. 19 (2023) 1276-1285. 467. Dynamical interaction analysis of proteins by a random forest-fragment molecular orbital (RF-FMO) method and application to Src tyrosine kinase. Y. Yamamoto, S. Nakano, Y. Shigeta, Bull. Chem. Soc. Jap. 96 (2023) 42-47. 468. Quantum chemical interaction analysis between SARS-CoV-2 main protease and ensitrelvir compared with its initial screening hit. C. Watanabe, S. Tanaka, Y. Okiyama, H. Yuki, T. Ohyama, K. Kamisaka, D. Takaya, K. Fukuzawa, T. Honma, J. Phys. Chem. Lett. 14 (2023) 3609-3620. 469 SophosQM: accurate binding affinity prediction in compound optimization. R. Guareschi, I. Lukac, I. H. Gilbert, F. Zuccotto, ACS Omega 8 (2023) 15083-15098. 470. Fragment molecular orbital based affinity prediction toward pyruvate dehydrogenase kinases: insights into the charge transfer in hydrogen bond networks. T. Akaki, S. Nakamura, K. Nishiwaki, I. Nakanishi. Chem. Pharm. Bull. 71 (2023) 299-306. 471. Proposal of novel ApoE4 inhibitors from the natural spice Cinnamon for the treatment of Alzheimer's disease: Ab initio molecular simulations. D. Shaji, A. Das, R. Suzuki, Y. Nagura, H. Sabishiro, N. Kurita, Biophys. Chem. 296 (2023) 106990. 472. Theoretical study on the regulating mechanism of the transition between the open-closed state of hCtBP2: a combined molecular dynamics and quantum mechanical interaction analysis. Y. Yamamoto, Y. Shigeta, Chem. Lett. 52 (2023) 120-123. 473. Interactions of opicapone in the binding pocket of catechol o-methyltransferase: a crystallographic study and fragment molecular orbital analyses. K. Takebe, M. Suzuki, T. Kuwada-Kusunose, S. Shirai, K. Fukuzawa, T. Takamiya, N. Uzawa, H. Iijima, J. Chem. Inf. Model. 63 (2023) 4468-4476. 474. How E-, L-, and P-selectins bind to sLex and PSGL-1: a quantification of critical residue interactions. V. Sladek, P. Šmak, I. Tvaroška, J. Chem. Inf. Model. 63 (2023) 5604-5618. 475. Dissipative particle dynamics simulation for peptoid nanosheet with non-empirical parameter set. Y. Tachino, K. Okuwaki, H. Doi, K. Akisawa, Y. Mochizuki, Jap. J. Appl. Phys. 62 (2023) 090902. 476. Site-specific ionization potentials and electron affinities in large molecular systems at coupled cluster level. D. G. Fedorov, J. Phys. Chem. A 127 (2023) 9357-9364. 477. The C-terminal tail of Rad17, iVERGE, binds the 9-1-1 complex independently of AAA+ ATPase domains to provide another clamp-loader interface, Y. Fukumoto, T. Hoshino, Y. Nakayama, Y. Ogra, DNA Repair 130 (2023) 103567. 478. Development of reverse mapping system bridging dissipative particle dynamics and fragment molecular orbital calculation. K. Okuwaki, H. Doi, T. Ozawa, Y. Mochizuki, Jap. J. Appl. Phys. 62 (2023) 110902. 479. Probing RNA-small molecule interactions using biophysical and computational approaches. A. Shino, M. Otsu, K. Imai, K. Fukuzawa, E. C. Morishita, ACS Chem. Biol. 18 (2023) 2368-2376. 480. In silico design of natural inhibitors of ApoE4 from the plant moringa oleifera: molecular docking and ab initio fragment molecular orbital calculations. D. Shaji, Y. Nagura, H. Sabishiro, R. Suzuki, N. Kurita, Molecules 28 (2023) 8035. 481. Leveraging the Fragment Molecular Orbital Method to Explore the PLK1 Kinase Binding Site and Polo-Box Domain for Potent Small-Molecule Drug Design. H. Jin, J. Kim, O. Lee, H. Kim, K. T. No, Int. J. Mol. Sci. 24 (2023), 15639. 482. Binding free energy calculation based on the fragment molecular orbital method and its application in designing novel SHP-2 allosteric inhibitors. Z. Yuan, X. Chen, S. Fan, L. Chang, L. Chu, Y. Zhang, J. Wang, S. Li, J. Xie, J. Hu, R. Miao, L. Zhu, Z. Zhao, H. Li, S. Li, Int. J. Mol. Sci. 25 (2024) 671. 483. Quantum-chemical analyses of interactions for biochemical applications. D. G. Fedorov, In Computational drug discovery: methods and applications, V. Poongavanam, V. Ramaswamy (Eds.), Wiley, 2024, pp. 183-210. 484. Fragment molecular orbital-based variational quantum eigensolver for quantum chemistry in the age of quantum computing. H. Lim, D. H. Kang, J. Kim, A. Pellow-Jarman, S. McFarthing, R. Pellow-Jarman, H.-N. Jeon, B. Oh, J.-K. K. Rhee, K. T. No, Sc. Rep. 14 (2024) 2422. 485. FMO-guided design of darunavir analogs as HIV-1 protease inhibitors. H. Chuntakaruk, K. Hengphasatporn, Y. Shigeta, C. Aonbangkhen, V. S. Lee, T. Khotavivattana, T. Rungrotmongkol, S. Hannongbua, Sc. Rep. 14 (2024) 3639. 486. Analysis of site energies and excitonic couplings: the role of symmetry and polarization. D. G. Fedorov, J. Phys. Chem. A 128 (2024) 1154-1162. 487. Enhancement of energy decomposition analysis in fragment molecular orbital calculations. S. Matsuoka, K. Sakakura, Y. Akinaga, K. Akisawa, K. Okuwaki, H. Doi, Y. Mochizuki, J. Comp. Chem. 45 (2024) 898-902. 488. Prediction of binding pose and affinity of nelfinavir, a SARS-CoV-2 main protease repositioned drug, by combining docking, molecular dynamics, and fragment molecular orbital calculations. Y. Handa, K. Okuwaki, Y. Kawashima, R. Hatada, Y. Mochizuki, Y. Komeiji, S. Tanaka, T. Furuishi, E. Yonemochi, T. Honma, K. Fukuzawa, J. Phys. Chem. B 128 (2024) 2249-2265.